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How to create a realizable digital filter

e L = Odd Length:
hin] = hi[n]w(n],

where wn] is nonzero for — (£51) < n < (551)

o L = Even Length:

o= o (152)] i

where w[n] is nonzero for 0 < n < L — 1.
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Multiplication <+ Convolution!

@ Convolution < Multiplication:
h[n] * x[n] <> H(w)X(w)

@ Multiplication <> Convolution:

winlh[n] & %W(w) « H(w)
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Result: Windowing Causes Artifacts

We've already seen the result. Windowing by a rectangular window
(i.e., truncation) causes nasty artifacts!
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Windowing Causes Artifacts

Bln] = hilnlwln] & H(w) = %H,-(w) - W(w)

Today's Topic:
What is W(w)? How does it affect H(w)?




Rectangular
°

Outline

© Rectangular Windows
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Review: Rectangle <> Sinc

@ The DTFT of a sinc is a rectangle:

1 |w| <we
0 we<lwl<m

h[n] = (%) sinc(wen)  +  H(w) = {

@ The DTFT of a rectangle is a sinc-like function, called the
Dirichlet form:

1 < Bt _sin(wL/2)
wrln} = {O otherwiie o Welw) = sin(w/2)
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Dirichlet Form: Proof Review

Review of the proof:

L-1
o 2
Wr(w) = > wglnle "= > e
n=—o00 n*—%
L-1
= ejw(%) Z e_jwm
m=0
—jwl
_ () (Lo
e ( 1—e v

Qiwl/2 _ g—jwl/2
T\ Tew/2 _ g2
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Review: Rectangle <> Sinc

hiln], omegac=n/4

Hi(w), omegac=1/4
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Properties of the Dirichlet form: Periodicity

Wr(w) is periodic with a period of 2

sin(wl/2) B

1% =—"2 :

R(@) = 5w/ 4
Both numerator and denominator ’ AAAN A A AN
are periodic with period 27. v vV V'V \/ v vV V'V \/
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Properties of the Dirichlet form: DC Value

Wr(w) has a peak amplitude of L
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Properties of the Dirichlet form: Sinc-like

sin(wl/2)

sin(w/2)

sin(wl/2)
w/2

Wg(w) =

Q

Because, for small values of w,

sin (%) ~ %

Wa(w) falls as 2/w
T 1

w2 314
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Properties of the Dirichlet form: Nulls

Frequencies of the null of Wgr(w)

sin(wL/2) o
sin(w/2) .

It equals zero whenever

WR(w) =

L
YTk

2 4\

. 0 2m/L 4L /L 8n/L
For any nonzero integer, k.
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Implication for filter design: Transition band

When H(w) = %W(w) * Hij(w), the mainlobe of W(w) smooths

out the transition from H(w) =1 (the “passband”) to H(w) =0
(the “stopband”). There is a smooth transition between these two,
a kind of ramp, whose width is roughly half the width of W(w)'s

mainlobe, i.e., if
1 < we
Hi(w) = { ol <w

0 otherwise
then

1 <
H(w) ~ { ] < we

0 \(,u|>cuC+2T7r



Rectangular
00000000 e0000

Properties of the Dirichlet form: Sidelobes

Its sidelobes are

Frequencies of the peaks of Wgr(w)

W 3£ _ _1 ~ _2L 10
R\L) " sin(B3r/2L) ~ 3r :
5 1 2L :
W — =~ — 4
R < L > sin(57/2L) ~ 5m )
7 ~1 —2L
Wr|— )= ~
R < L > sin(7w/2L) 7w - \/

0 3L smL L
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Properties of the Dirichlet form: Relative Sidelobe

Amplitudes

The relative sidelobe amplitudes
don’t depend on L:

Frequencies of the peaks of Wgr(w)

Wr (3F) -1 2
Wgr(0) — Lsin(3w/2L) ~ 3r¢ .
We(F) 1 2 4
Wr(0 Lsin(57/2L) ~ 5w :
We(F) -1 =2 | N\ /

WR(S) ~ Lsin(77/2L)
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Properties of the Dirichlet form: Decibels

We often describe the relative
sidelobe amplitudes in decibels,
which are defined as

Wr(w) in decibels
0

W ()

2
~ 20log1q 3.~ —13dB

—204

20logyg

2
~ 20 |Og10 g ~ —18dB ]

404

W E 2 o 3L SnyL L
(%) ~ 20logyo — ~ —21dB
T

20logyg

20logyg
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Implication for filter design: Ripple

o The d* sidelobe of W/(w) has an amplitude of 2L/(2k + 1),
and a width of 27/L, so its total area is roughly 4/(2k +1) —
regardless of the length of the window!

@ As w moves away from the transition band, the number of
sidelobes of W/(w) overlapping with the passband of H;(w)
decreases, so the filter response H(w) ripples positive and
negative.

e Stopband ripples are frequencies where H;(w) = 0, but
H(w) # 0 because of the ripple.

@ Longer windows result in filters with smaller ripples.
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Go to the course webpage, and try the quiz!
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Bartlett (Triangular) Window

A Bartlett window is a triangle:

wg[n] = max <0’ 1= (L—’nl)/2)

1.04
0.8 1
0.6 1

. w M

00— 0%

1 '(L—Il)/Z o (Lrll)IZ L
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x[m]

0 .—'—'—'—.—.—.—H—LL—u'—'—'—'—.—.—.—H
. . h[=11-m]
A Bartlett window is the 1]
convolution of two rectangular NRAd
windows, each with a height of ' 1= himiexim] ‘

\/g and a length of % N
E
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Since each of the two little

H 2
reCta ngles has a helght Of \/: Rectangle with length (L-1)/2, height sqrt(2/(L-1))

and a length of % their 04
spectra have a DC value of 02
0.0
L _ 1 €L L1z 0 e L
WB(O) s —_, DTFT of the small rectangle
2 5]
.
and nulls of
0

4 k 0 anyi ‘L-.'l 8/l ‘L-l
WB< U > —0 (L) (L-1)
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Bartlett window w/length L

Since m: [
wg[n] = wg[n] x wg[n], 0:0 TM MT
. I '
therefore . TP of oot Wndow
We(w) = (Wr(w))? ]

0 4n/(L-1) sn/(L-1)
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In particular: the sidelobes of a
Bartlett window are much lower

Bartlett window w/length L

than those of a rectangular 10 .
window! o5
e (25) Ll
20logo | gy |~ ~204B  orortwsemion e
107
20 logy, Lﬁ) ~-36dB
W (0) e o awtn  ewiow




Things to Notice

@ The main lobe width has been doubled, because the Bartlett
window is created by convolving two half-length rectangular
windows.

o Therefore H(w) = 5= Wi (w) * Hj(w) will have a wider
transition band.

@ The sidelobe height has been dramatically reduced, because
convolving in the time domain means multiplying in the
frequency domain.

o Therefore H(w) = 5= Wi (w) * H;(w) will have much lower
stopband ripple.
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@ Hann and Hamming Windows
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The Hann Window

Here's the Hann window:

wln] = wa[n] (; 4 %cos (in”l))

/N

.

0.6 1

0.4 4

0.2 4

0O — | @

L -(L—Il),’z 0 (L-i)JZ L
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Spectrum of the Hann Window

. o (24 Leos (277

wpn|n Wgr(N - -

N RB\2 " 2 [—1

]. 1 [T 1 s 27
= Swln] + ZWR[n]e—J% n ZW,;,[n]eﬂ%

So its spectrum is:
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Spectrum of the Rectangular Window

Here's the DTFT of the rectangular window, 0.5Wg(w):

Center term of Hann spectrum is just 0.5Wg(w)
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Spectrum of Two Parts of the Hann Window

Here's the DTFT of two parts of the Hann Window,
LWe(w) + We (v - 25):

First two terms are 0.5Wg(w) + 0.25Wgr(w — 2n/(L — 1))
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Spectrum of the Hann Window

Here's the DTFT of the Hann window,
Wa() = JWr(w) + §We (w0 = 25) + 3We (w0 + 25):

All 3 terms of the Hann window spectrum
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Things to Notice

@ The main lobe width has been doubled, because each of the
two nulls next to the main lobe have been canceled out.
o Therefore H(w) = 5= Wi (w) * Hj(w) will have a wider
transition band.
@ The sidelobe height has been dramatically reduced, because
the frequency-shifted copies each cancel out the main copy.
o Therefore H(w) = 5= Wi (w) * Hj(w) will have much lower
stopband ripple.
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The Hamming Window

Here's the Hamming window:

wyaln] = weln] (A+ (1~ A)cos (LQin1>)

n

0.6 4
0.4 4

0.2 4

o0 ————————— 80 %

1 —(L*]I.},’Z 0 (L']‘.)J2 L



Hann and Hamming
0000000800

Spectrum of the Hamming Window

1-A 2 1-A 2
WM(OJ) = AWR(W)—FT Wg <w — T >—|—2WR <w + 71' ) ’

where A is chosen to minimize the height of the first sidelobe:

N
o s el

S NZetN T RN ah
s N, PN

b N f e

T
- -3/4 -2
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Spectrum of the Hamming Window

3w

The first sidelobe is at w = 2%. At that frequency, Wiy (w) is

roughly:

57 1-A br 27w 1-A Sr 27w
AWR<L>+2WR<L_L>+2WR<L+L>
oal( L) 1-A(LN 1-A(L
- 57 2 37 2 i

~ (0.13945A — 0.07579) L,
... which is zero if A = 0.5434782.
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The Hamming Window

The Hamming window chooses A = 0.5434782, rounded off to two
significant figures:

wnln] = wr[n] <o.54 +0.46 cos <L27in1)>

wie wie

... with the result that the first sidelobe of the Hamming window
has an amplitude below 0.01:
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Main Features of Four Windows

Window Shape First First First Side-
Null (= | Side- lobe Level
Transition | lobe (=
Band- Stopband
width) Ripple)
Rectangular rectangle 2{ 0.11L -13dB
Bartlett triangle 4% 0.05L -26dB
Hann raised co- 4T7r -0.028L -31dB
sine
Hamming | raised co- 4% -0.0071L | -43dB

sine

Summary
°
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