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Review: Ideal Filters

Ideal Lowpass Filter:

HLP(ω) =

{
1 |ω| ≤ ωc ,

0 ωc < |ω| ≤ π.
↔ hLP [m] =

ωc

π
sinc(ωcn)

Ideal Highpass Filter:

HHP(ω) = 1− HLP(ω) ↔ hHP [n] = δ[n]− ωc

π
sinc(ωcn)

Ideal Bandpass Filter:

HBP(ω) = HLP,ω2(ω)− HLP,ω1(ω)

↔hBP [n] =
ω2

π
sinc(ω2n)− ω1

π
sinc(ω1n)



Review Finite-Length Windowing Even Length Summary

Outline

1 Review: Ideal Filters

2 Realistic Filters: Finite Length

3 Multiplication is the Fourier Transform of Convolution!

4 Realistic Filters: Even Length

5 Summary



Review Finite-Length Windowing Even Length Summary

Ideal Filters are Infinitely Long

All of the ideal filters, hLP,i [n] and so on, are infinitely long!

In demos so far, I’ve faked infinite length by just making
hLP,i [n] more than twice as long as x [n].

If x [n] is very long (say, a 24-hour audio recording), you
probably don’t want to do that (computation=expensive)
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Finite Length by Truncation

We can force hLP,i [n] to be finite length by just truncating it, say,
to 2M + 1 samples:

hLP [n] =

{
hLP,i [n] −M ≤ n ≤ M

0 otherwise
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Truncation Causes Frequency Artifacts

The problem with truncation is that it causes artifacts.
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Windowing Reduces the Artifacts

We can reduce the artifacts (a lot) by windowing hLP,i [n], instead
of just truncating it:

hLP [n] =

{
w [n]hLP,i [n] −M ≤ n ≤ M

0 otherwise

where w [n] is a window that tapers smoothly down to near zero at
n = ±M, e.g., a Hamming window:

w [n] = 0.54 + 0.46 cos

(
2πn

2M

)
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Windowing a Lowpass Filter
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Windowing Reduces the Artifacts
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Why does truncation cause artifacts?

But why does truncation cause artifacts?
The reason is that, when we truncate an impulse response, we are
(uintentionally?) multiplying it by a rectangular window:

hLP [n] =

{
hLP,i [n] −M ≤ n ≤ M

0 otherwise

= wR [n]hLP,i [n]

. . . where wR [n] is a function called the “rectangular window:”

wR [n] =

{
1 −M ≤ n ≤ M

0 otherwise
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Review: DTFT of Convolution is Multiplication

Remember that the DTFT of convolution is multiplication. If

y [n] = h[n] ∗ x [n]

. . . then . . .
Y (ω) = H(ω)X (ω)
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New Stuff: DTFT of Multiplication is Convolution!

Guess what: the DTFT of multiplication is (1/2π times)
convolution!! If

g [n] = w [n]h[n]

. . . then . . .

G (ω) =
1

2π
W (ω) ∗ H(ω)
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Definition and proof: convolution in frequency

The previous slide used the formula “W (ω) ∗ H(ω)”. What does
that even mean?
To find out, let’s try taking the DTFT of g [n]:

G (ω) =
∑
n

g [n]e−jωn

=
∑
n

w [n]h[n]e−jωn

=
∑
n

w [n]

(
1

2π

∫ π

−π
H(θ)e jθndθ

)
e−jωn

In the last line, notice the difference between θ and ω. One is the
dummy variable for the IDTFT, one is the dummy variable for the
DTFT.
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Definition and proof: convolution in frequency

Now let’s complete the derivation:

G (ω) =
∑
n

w [n]

(
1

2π

∫ π

−π
H(θ)e jθndθ

)
e−jωn

=
1

2π

∫ π

−π
H(θ)

(∑
n

w [n]e−j(ω−θ)n

)
dθ

=
1

2π

∫ π

−π
H(θ)W (ω − θ)dθ
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New Stuff: DTFT of Multiplication is Convolution!

So when we window a signal in the time domain,

g [n] = w [n]h[n]

That’s equivalent to convolving H(ω) by the DTFT of the window,

G (ω) =
1

2π
W (ω) ∗ H(ω)

=
1

2π

∫ π

−π
H(θ)W (ω − θ)dθ
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Windowing Causes Frequency Artifacts

We’ve already seen the result. Windowing by a rectangular window
(i.e., truncation) causes nasty artifacts!
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Windowing Reduces the Artifacts

. . . whereas windowing by a smooth window, like a Hamming
window, causes a lot less artifacts:
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Quiz

Go to the course web page, and try the quiz!
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Even Length Filters

Often, we’d like our filter hLP [n] to be even length, e.g., 200
samples long, or 256 samples. We can’t do that with this
definition:

hLP [n] =

{
w [n]hLP,i [n] −M ≤ n ≤ M

0 otherwise

. . . because 2M + 1 is always an odd number.
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Even Length Filters using Delay

We can solve this problem using the time-shift property of the
DTFT:

z [n] = x [n − n0] ↔ Z (ω) = e−jωn0X (ω)
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Even Length Filters using Delay

Let’s delay the ideal filter by exactly M − 0.5 samples, for any
integer M:

z [n] = hLP,i [n − (M − 0.5)] =
ωc

π
sinc

(
ω

(
n −M +

1

2

))
I know that sounds weird. But notice the symmetry it gives us.
The whole signal is symmetric w.r.t. sample n = M − 0.5. So
z [M − 1] = z [M], and z [M − 2] = z [M + 1], and so one, all the
way out to

z [0] = z [2M − 1] =
ωc

π
sinc

(
ω

(
M − 1

2

))
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Even Length Filters using Delay
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Even Length Filters using Delay

Apply the time delay property:

z [n] = hLP,i [n − (M − 0.5)] ↔ Z (ω) = e−jω(M−0.5)HLP,i (ω),

and then notice that

|e−jω(M−0.5)| = 1

So
|Z (ω)| = |HLP,i (ω)|
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Even Length Filters using Delay
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Even Length Filters using Delay and Windowing

Now we can create an even-length filter by windowing the delayed
filter:

hLP [n] =

{
w [n]hLP,i [n − (M − 0.5)] 0 ≤ n ≤ (2M − 1)

0 otherwise

where w [n] is a Hamming window defined for the samples
0 ≤ m ≤ 2M − 1:

w [n] = 0.54− 0.46 cos

(
2πn

2M − 1

)
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Even Length Filters using Delay and Windowing



Review Finite-Length Windowing Even Length Summary

Even Length Filters using Delay and Windowing
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Summary: Ideal Filters

Ideal Lowpass Filter:

HLP(ω) =

{
1 |ω| ≤ ωc ,

0 ωc < |ω| ≤ π.
↔ hLP [m] =

ωc

π
sinc(ωcn)

Ideal Highpass Filter:

HHP(ω) = 1− HLP(ω) ↔ hHP [n] = δ[n]− ωc

π
sinc(ωcn)

Ideal Bandpass Filter:

HBP(ω) = HLP,ω2(ω)− HLP,ω1(ω)

↔hBP [n] =
ω2

π
sinc(ω2n)− ω1

π
sinc(ω1n)
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Summary: Practical Filters

Odd Length:

hHP [n] =

{
hHP,i [n]w [n] −M ≤ n ≤ M

0 otherwise

Even Length:

hHP [n] =

{
hHP,i [n − (M − 0.5)]w [n] 0 ≤ n ≤ 2M − 1

0 otherwise

where w [n] is a window with tapered ends, e.g.,

w [n] =

{
0.54− 0.46 cos

(
2πn
L−1

)
0 ≤ n ≤ L− 1

0 otherwise
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