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Review: ldeal Filters

o Ideal Lowpass Filter:

1 |w| <we, We .
el = {o LJQ wl<n O uplml= osinc(wen)

o Ideal Highpass Filter:
Hup(w) =1 — Hip(w) < hupln] = 8[n] — “Esinc(wen)
™
o Ideal Bandpass Filter:

Hep(w) = Hipw,(w) — Hip w, (w)

<hgp[n] = gsinc(wzn) - ﬂsinc(wln)
T T
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© Realistic Filters: Finite Length



Finite-Length
®00000

Ideal Filters are Infinitely Long

o All of the ideal filters, hyp j[n] and so on, are infinitely long!

@ In demos so far, I've faked infinite length by just making
hip i[n] more than twice as long as x[n].

e If x[n] is very long (say, a 24-hour audio recording), you
probably don’t want to do that (computation=expensive)
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Finite Length by Truncation

We can force hyp i[n] to be finite length by just truncating it, say,
to 2M + 1 samples:

h [ ] th,,'[n] —-M <n< M
nl =
tP 0 otherwise
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Truncation Causes Frequency Artifacts

The problem with truncation is that it causes artifacts.
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Windowing Reduces the Artifacts

We can reduce the artifacts (a lot) by windowing h;p j[n], instead
of just truncating it:

hepln] = {(:V[n]hLP’i["] ~M<n<M

otherwise

where w[n| is a window that tapers smoothly down to near zero at
n==+M, e.g., a Hamming window:

27mn
—0.54 4+ 0.4 e
w[n] =0.54+0 6cos(2M>
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Windowing a Lowpass Filter

Truncated h p[n], cutoff=m/4
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Windowing Reduces the Artifacts
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© Multiplication is the Fourier Transform of Convolution!



Windowing
©00000000

Why does truncation cause artifacts?

But why does truncation cause artifacts?
The reason is that, when we truncate an impulse response, we are
(uintentionally?) multiplying it by a rectangular window:

th[n] =

th,,-[n] —-M <n< M
0 otherwise

= WR[n] hLP’i[n]

...where wg[n] is a function called the “rectangular window:"

(1] 1 - M<n<<M
W, =
R 0 otherwise
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Review: DTFT of Convolution is Multiplication

Remember that the DTFT of convolution is multiplication. If
yln] = hn] x x[n]

...then ...



Windowing
00®000000

New Stuff: DTFT of Multiplication is Convolution!

Guess what: the DTFT of multiplication is (1/27 times)
convolution!! If

g[n] = win]h[n]
...then ...

G(w) = %W(w) * H(w)



Windowing
[eleleY YoloYelele)

Definition and proof: convolution in frequency

The previous slide used the formula “W/(w) * H(w)". What does
that even mean?
To find out, let's try taking the DTFT of g[n]:

=> glnle "
= Z w[n]h[n]e 7*"

— Z wn] ( / H(6 )ejgnd0> jwn

In the last line, notice the difference between 6 and w. One is the
dummy variable for the IDTFT, one is the dummy variable for the
DTFT.
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Definition and proof: convolution in frequency

Now let's complete the derivation:

Gw) =S win) (;ﬂ /_ : H(#)e dg) odon

n

_ % " Ho) (Z W[n]e—J'(w—e)") do

- n

_ % " HO)W(w — 0)do

—Tr
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New Stuff: DTFT of Multiplication is Convolution!

So when we window a signal in the time domain,
gln] = w(n]h[n]
That's equivalent to convolving H(w) by the DTFT of the window,
G(w) = o= W(w) + H(w)
w) = o w w
1 vy

:% .

H(O)W (w — 0)do
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Windowing Causes Frequency Artifacts

We've already seen the result. Windowing by a rectangular window
(i.e., truncation) causes nasty artifacts!
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Windowing Reduces the Artifacts

... whereas windowing by a smooth window, like a Hamming
window, causes a lot less artifacts:
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Go to the course web page, and try the quiz!
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Even Length Filters

Often, we'd like our filter h p[n] to be even length, e.g., 200
samples long, or 256 samples. We can't do that with this
definition:

hepln] wlnlhipiln] —M<n<M
n =
tP 0 otherwise

...because 2M + 1 is always an odd number.
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Even Length Filters using Delay

We can solve this problem using the time-shift property of the
DTFT:

zln=x[n—ng] & Z(w)=eT"X(w)
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Even Length Filters using Delay

Let's delay the ideal filter by exactly M — 0.5 samples, for any
integer M:

2l = hues [ — (M~ 05)] = “Ssinc (s (- M+ ) )

| know that sounds weird. But notice the symmetry it gives us.
The whole signal is symmetric w.r.t. sample n= M — 0.5. So
z[M — 1] = z[M], and z[M — 2] = z[M + 1], and so one, all the
way out to

2[0] = z[2M — 1] = %sinc (w <M_ ;))
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Even Length Filters using Delay

Ideal LPF, delayed by 9.5 samples
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Even Length Filters using Delay

Apply the time delay property:

z[n) = hipi[n—(M—05)] < Z(w)=e*M09p 5 (w),
and then notice that

7jw(/\/l70.5)‘ -1

le

So
| Z(w)| = [HLp,i(w)]
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Even Length Filters using Delay

Ideal LPF, delayed by 9.5 samples
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Even Length Filters using Delay and Windowing

Now we can create an even-length filter by windowing the delayed
filter:

wlnlhipi[n— (M —0.5)] 0<n<(2M—1)
hupln] = 0 otherwise

where w[n] is a Hamming window defined for the samples
0<m<2M—-1:

27n
w([n] = 0.54 — 0.46 cos <2M - 1>
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Even Length Filters using Delay and Windowing

Truncated Delayed f[n], cutoff=m/4
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Even Length Filters using Delay and Windowing
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Summary: Ideal Filters

o Ideal Lowpass Filter:

1 |w| <we, We .
el = {o LJQ wl<n O uplml= osinc(wen)

o Ideal Highpass Filter:
Hup(w) =1 — Hip(w) < hupln] = 8[n] — “Esinc(wen)
™
o Ideal Bandpass Filter:

Hep(w) = Hipw,(w) — Hip w, (w)

<hgp[n] = gsinc(wzn) - ﬂsinc(wln)
T T
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Summary: Practical Filters

e Odd Length:

th[n] =

thy,-[n]W[n] -M <n< M
0 otherwise

@ Even Length:

th[n] =

hupi[n— (M —0.5)]w[n] 0<n<2M -1
0 otherwise

where w[n] is a window with tapered ends, e.g.,

2mn
il — {0.54 ~0.46c0s (#4) 0<n<L-1

0 otherwise
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