Review	Periodic Signals	Pure Delay	Example	Cascades	Summary

Lecture 19: Cascaded LSI Systems

Mark Hasegawa-Johnson These slides are in the public domain

ECE 401: Signal and Image Analysis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Review	Periodic Signals	Pure Delay	Example	Cascades	Summary

- Review: DTFT, Square Wave, Ideal Filters, and DT Processing of CT Signals
- 2 Response of a Filter when the Input is Periodic
- 3 A Pure-Delay "Filter"
- 4 Example: Delaying a Square Wave
- 5 Cascaded LSI Systems

Review	Periodic Signals	Pure Delay	Example	Cascades	Summary
●00000	0000	00000	000000	00000000000	00
Outline					

Review: DTFT, Square Wave, Ideal Filters, and DT Processing of CT Signals

- 2 Response of a Filter when the Input is Periodic
- 3 A Pure-Delay "Filter"
- 4 Example: Delaying a Square Wave
- **5** Cascaded LSI Systems

6 Summary

The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n} d\omega$$

Properties worth knowing include:

- Time Shift: $x[n n_0] \leftrightarrow e^{-j\omega n_0} X(\omega)$
- Filtering is Convolution:

$$y[n] = h[n] * x[n] \leftrightarrow Y(\omega) = H(\omega)X(\omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Review
 Periodic Signals
 Pure Delay
 Example
 Cascades
 Summary

 Square
 Wave, Rectangular
 Window
 Summary
 Summary</

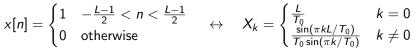
Periodic x(t), with period T_0 :

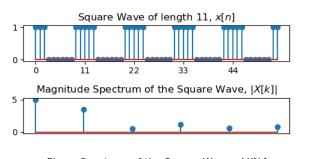
$$egin{aligned} x(t) &= egin{cases} 1 & -rac{L}{2} \leq n \leq rac{L}{2} \ 0 & ext{otherwise} \ X_k &= egin{cases} rac{L}{T_0} & k = 0 \ rac{\sin(\pi k L/T_0)}{\pi k} & k
eq 0 \end{aligned}$$

Aperiodic *x*[*n*]:

$$d_{L}[n] = \begin{cases} 1 & -\frac{(L-1)}{2} \le n \le \frac{(L-1)}{2} \\ 0 & \text{otherwise} \end{cases}$$
$$D_{L}(\omega) = \frac{\sin(\omega L/2)}{\sin(\omega/2)}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @





э.

Ideal Lowpass Filter	

$$H_{LP}(\omega) = \begin{cases} 1 & |\omega| \le \omega_c, \\ 0 & \omega_c < |\omega| \le \pi. \end{cases} \quad \leftrightarrow \quad h_{LP}[m] = \frac{\omega_c}{\pi} \operatorname{sinc}(\omega_c n)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

A bandlimited periodic signal x(t) can be sampled, filtered, then sinc-interpolated to create:

$$\begin{aligned} x(t) &= \sum_{k=-N}^{N} X_k e^{j2\pi kF_0 t} \\ x[n] &= \sum_{k=-N}^{N} X_k e^{jk\omega_0 n}, \\ y[n] &= \sum_{k=-N}^{N} Y_k e^{jk\omega_0 n}, \\ y(t) &= \sum_{k=-N}^{N} Y_k e^{j2\pi kF_0 n}, \end{aligned}$$

where
$$\omega_0 = \frac{2\pi F_0}{F_s}$$
, and $N = \lfloor \frac{F_s/2}{F_0} \rfloor$, and $Y_k = H(k\omega_0)X_k$.

Review	Periodic Signals	Pure Delay	Example	Cascades	Summary
000000	●○○○	00000	000000	00000000000	00
Outline					

Review: DTFT, Square Wave, Ideal Filters, and DT Processing of CT Signals

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- 2 Response of a Filter when the Input is Periodic
- 3 A Pure-Delay "Filter"
- 4 Example: Delaying a Square Wave
- **5** Cascaded LSI Systems
- 6 Summary

Now we're ready to ask this question:

What is the output of a filter when the input, x[n], is periodic with period N_0 ?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

9 Fourier Series: If the input is periodic, then we can write it as

$$x[n] = \sum_{k=-N_0/2}^{(N_0-1)/2} X_k e^{j2\pi kn/N_0}$$

2 Frequency Response: If the input is $e^{j\omega n}$, then the output is

$$y[n] = H(\omega)e^{j\omega n}$$

Linearity (of convolution, and of frequency response): If the input is x₁[n] + x₂[n], then the output is

$$y[n] = y_1[n] + y_2[n]$$

Putting all those things together, if the input is

$$x[n] = \sum_{k=-N_0/2}^{(N_0-1)/2} X_k e^{j2\pi kn/N_0}$$

... then the output is

$$y[n] = \sum_{k=-N_0/2}^{(N_0-1)/2} X_k H(k\omega_0) e^{j2\pi kn/N_0}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

... where $\omega_0 = \frac{2\pi}{N_0}$ is the fundamental frequency.

Review	Periodic Signals	Pure Delay	Example	Cascades	Summary
000000	0000	●○○○○	000000	000000000000	00
Outline					

Review: DTFT, Square Wave, Ideal Filters, and DT Processing of CT Signals

2 Response of a Filter when the Input is Periodic

3 A Pure-Delay "Filter"

4 Example: Delaying a Square Wave

5 Cascaded LSI Systems

6 Summary

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへで

One thing we can do to a signal is to just delay it, by n_0 samples:

$$y[n] = x[n - n_0]$$

Even this very simple operation can be written as a convolution:

$$y[n] = g[n] * x[n]$$

where the "filter," g[n], is just

$$g[n] = \delta[n - n_0] = \begin{cases} 1 & n = n_0 \\ 0 & \text{otherwise} \end{cases}$$

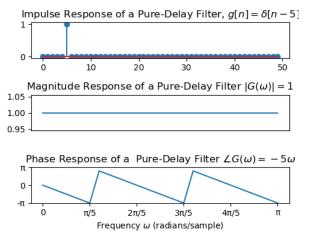
$$g[n] = egin{cases} 1 & n = n_0 \ 0 & ext{otherwise} \end{cases}$$

The frequency response is

$$G(\omega) = \sum_{m} g[m] e^{-j\omega m} = e^{-j\omega n_0}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Here is the impulse response of a pure-delay "filter" (and the magnitude and phase responses, which we'll talk about next).



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

$$G(\omega) = \sum_{m} g[m] e^{-j\omega m} = e^{-j\omega n_0}$$

Notice that the magnitude and phase response of this filter are

$$|G(\omega)| = 1$$

 $\angle G(\omega) = -\omega n_0$

So, for example, if have an input of $x[n] = cos(\omega n)$, the output would be

$$y[n] = |G(\omega)| \cos(\omega n + \angle G(\omega)) = \cos(\omega n - \omega n_0)$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Review	Periodic Signals	Pure Delay	Example	Cascades	Summary
000000	0000	00000	•••••	00000000000	00
Outline					

Review: DTFT, Square Wave, Ideal Filters, and DT Processing of CT Signals

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

2 Response of a Filter when the Input is Periodic

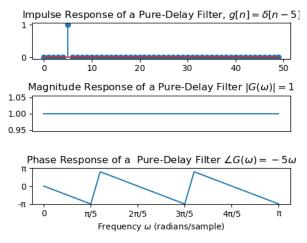
3 A Pure-Delay "Filter"

4 Example: Delaying a Square Wave

5 Cascaded LSI Systems

6 Summary

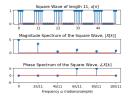
Here are the magnitude and phase response of the pure delay filter.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

 Review
 Periodic Signals
 Pure Delay
 Example
 Cascades
 Summary

 Spectrum of a Square Wave



Here are the Fourier series coefficients of an $N_0 = 11$, L = 5, even-symmetric square wave:

$$X_k = \left. \frac{\sin(\omega L/2)}{\sin(\omega/2)} \right|_{\omega = \frac{2\pi k}{N_0}} = \frac{\sin(2\pi k L/N_0)}{\sin(2\pi k/N_0)}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

And here's what happens when we pass a periodic signal through a filter g[n]:

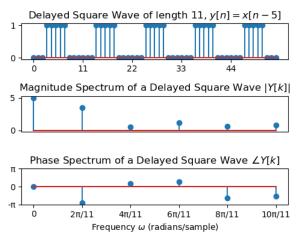
$$x[n] = \sum_{k=-N_0/2}^{(N_0-1)/2} X_k e^{j2\pi kn/N_0}$$

$$y[n] = \sum_{k=-N_0/2}^{(N_0-1)/2} X_k G(k\omega_0) e^{j2\pi kn/N_0}$$

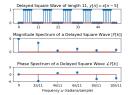
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

... where $\omega_0 = \frac{2\pi}{N_0}$ is the fundamental frequency.

And here's the result. This is the square wave, after being delayed by the pure-delay filter:



You can see that magnitude's unchanged, but phase is changed.



The Fourier series coefficients of a square wave, delayed by n_0 samples, are

$$Y_k = \frac{\sin(kL\omega_0/2)}{\sin(k\omega_0/2)}e^{-jk\omega_0n_0}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $\omega_0 = \frac{2\pi}{N_0}$.

Review	Periodic Signals	Pure Delay	Example	Cascades	Summary
000000	0000	00000	000000	●○○○○○○○○○○	00
Outline					

Review: DTFT, Square Wave, Ideal Filters, and DT Processing of CT Signals

2 Response of a Filter when the Input is Periodic

3 A Pure-Delay "Filter"

4 Example: Delaying a Square Wave

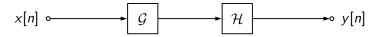
5 Cascaded LSI Systems

6 Summary

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Review	Periodic Signals	Pure Delay	Example	Cascades	Summary
000000	0000	00000	000000		00
Cascad	led LSI Syste	ems			

What happens if we pass the input through two LSI systems, in cascade?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Review	Periodic Signals	Pure Delay	Example	Cascades	Summary
000000	0000	00000	000000	○○●○○○○○○○○	00
Cascade	ed filters				

Suppose I pass the signal through filter g[n], then pass it through another filter, h[n]:

$$y[n] = h[n] * (g[n] * x[n]),$$

we get a signal y[n] whose spectrum is:

 $Y(\omega) = H(\omega)G(\omega)X[k]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Review
 Periodic Signals
 Pure Delay
 Example
 Cascades
 Summary

 coccoc
 coccoc
 coccoc
 coccoc
 coccoc
 coccoc

 Convolution is Commutative
 coccoc
 coccoc
 coccoccoc
 coccoccoc

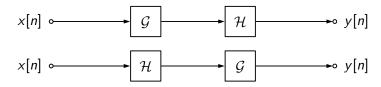
Notice that

$$Y(\omega) = H(\omega)G(\omega)X(\omega) = G(\omega)H(\omega)X(\omega)$$

and therefore:

$$y[n] = h[n] * (g[n] * x[n]) = g[n] * (h[n] * x[n])$$

Since convolution is commutative, these two circuits compute exactly the same output:



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Review	Periodic Signals	Pure Delay	Example	Cascades	Summary
000000	0000	00000	000000	00000000000	00
Quiz					

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

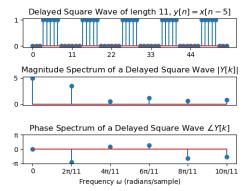
Go to the course webpage, and try the quiz!

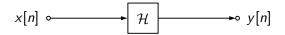
Suppose we define x[n] to be an 11-sample square wave, g[n] to be a delay, and h[n] to be a first difference:

$$x[n] = \begin{cases} 1 & -2 \le n \le 2\\ 0 & 3 \le n \le 8 \end{cases}$$
$$x[n] \xrightarrow{\mathcal{G}} z[n] = x[n-5]$$
$$z[n] \xrightarrow{\mathcal{H}} y[n] = z[n] - z[n-1]$$

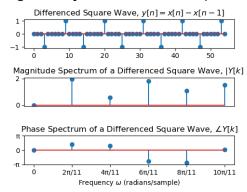
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Here's what we get if we just **delay** the square wave:

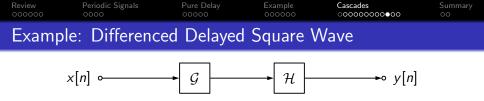




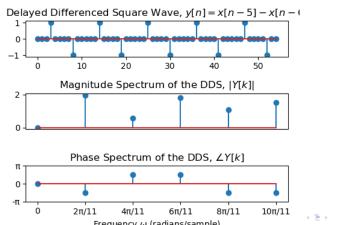
Here's what we get if we just **difference** the square wave:



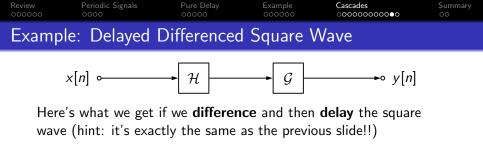
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

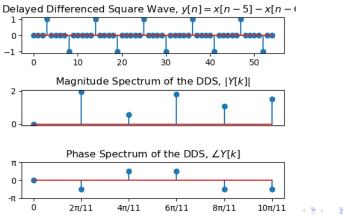


Here's what we get if we **delay** and then **difference** the square wave:



э





In general, when you cascade two LSI systems, the magnitudes multiply:

$$|Y_k| = |H(\omega)||G(\omega)||X_k|,$$

but the phases add:

$$\angle Y_k = \angle H(\omega) + \angle G(\omega) + \angle X_k$$

That's because:

 $H(\omega)G(\omega) = |H(\omega)|e^{j\angle H(\omega)}|G(\omega)|e^{j\angle G(\omega)} = |H(\omega)||G(\omega)|e^{j(\angle H(\omega) + \angle G(\omega)})|G(\omega)|e^{j(\angle H(\omega) + \angle G(\omega)})|G(\omega)|e^{j(\omega)})|G(\omega)|e^{j(\omega)})|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)})|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)})|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)})|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)})|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)})|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)})|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)})|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)}|G(\omega)|e^{j(\omega)})|G(\omega)|e^{j(\omega)}|G(\omega)|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	Periodic Signals	Pure Delay	Example	Cascades	Summary
000000	0000	00000	000000	00000000000	●○
Outline					

Review: DTFT, Square Wave, Ideal Filters, and DT Processing of CT Signals

2 Response of a Filter when the Input is Periodic

3 A Pure-Delay "Filter"

4 Example: Delaying a Square Wave

5 Cascaded LSI Systems

Review	Periodic Signals	Pure Delay	Example	Cascades	Summary
000000	0000	00000	000000	00000000000	○●
Summary					

• Periodic inputs: If the input of an LSI system is periodic,

$$x[n] = \sum_{k=-N_0/2}^{(N_0-1)/2} X_k e^{j2\pi kn/N_0}$$

... then the output is

$$y[n] = \sum_{k=-N_0/2}^{(N_0-1)/2} X_k H(k\omega_0) e^{j2\pi kn/N_0}$$

• **Cascaded LTI Systems** convolve their impulse responses, equivalently, they multiply their frequency responses:

$$y[n] = h[n] * g[n] * x[n], \quad Y_k = H(k\omega_0)G(k\omega_0)X_k$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ