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DTFT

The DTFT (discrete time Fourier transform) of any signal is X (w),

given by
X(w)= > x[n]e*"
1 [7 ;
x[n] = — X(w)e/“"dw
2m

—T

Properties worth knowing include:
o Time Shift: x[n — no] «> e /™ X (w)

@ Filtering is Convolution:

y[n] = h[n] * x[n] <> Y(w) = H(w)X(w)



Review
0®000

Square Wave, Rectangular Window

Periodic x(t), with period Tp:

1 —L<p<i
e)=qo 2
0 otherwise

L
= k=0
Xk =3 3
{5 (:ﬁ/To) k0

Aperiodic x[n]:

1 (1) o (1)
di[n] = 2 - ="
0 otherwise

Dulw) = Ssi?rf(cZuL//;))
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Discrete-Time Square Wave, Rectangular Window

Periodic x[n], with period To:

L1 L1 L
- <: n <: - — k = 0
x[n] = > 2 e Xe=1 Bk To)
0 otherwise T sin(r k7o) k#0

Square Wave of length 11, x[n]

LT Al

0 11 22 33 44

Magnitude Spectrum of the Square Wave, |X[k]|

ol T 2 ? 2 [ ]

Phase Spectrum of the Square Wave, £X[k]
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Ideal Lowpass Filter

1 |w| € we, We .
H;p(w) = <  h p|lm] = —sinc(wen
p(w) {0 we < |w] < 7. tp[m] = —sinc(wen)
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Review: DT Processing of CT Signals

A bandlimited periodic signal x(t) can be sampled, filtered, then
sinc-interpolated to create:

N
— Z XkejZTrkFot

k=—N

N
x[n] =) Xeeleon,

k=—N

N
ylnl = > Ve,

k=—N

N
— Z YkeJZﬂ'kan,

k=—N

where wg = 2o and N = L

F Fo J, and Yk = H(ka)Xk.
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© Response of a Filter when the Input is Periodic
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Response of a Filter when the Input is Periodic

Now we're ready to ask this question:

What is the output of a filter when the input, x[n], is periodic with
period Np? J
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Response of a Filter when the Input is Periodic

@ Fourier Series: If the input is periodic, then we can write it as

(V-2
x[n] _ Z Xkej27rkn/N0
k=—No/2

@ Frequency Response: If the input is /", then the output is
yln] = H(w)e™"

@ Linearity (of convolution, and of frequency response): If
the input is x1[n] + x2[n], then the output is

y[n] = ya[n] + ya[n]
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Response of a Filter when the Input is Periodic

Putting all those things together, if the input is

(No—1)/2 _
x[n] — Z Xkej27rkn/No
k=—No/2

...then the output is

(No—1)/2 _
ylnl=" Y XcH(kwo)e /Mo
k=—No/2

...where wg = Qﬁg is the fundamental frequency.
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A Pure-Delay “Filter”

One thing we can do to a signal is to just delay it, by ng samples:
y[n] = x[n — no]

Even this very simple operation can be written as a convolution:
yln] = gln] * x[n]

where the “filter,” g[n], is just

1 n=ng

0 otherwise

gln] = d[n — no] = {
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Frequency Response of A Pure-Delay “Filter”

0 otherwise

gln] = {1 nero

The frequency response is

Gw) =3 glmlem = eom
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Impulse Response of A Pure-Delay “Filter”

Here is the impulse response of a pure-delay “filter” (and the
magnitude and phase responses, which we'll talk about next).

Impulse Response of a Pure-Delay Filter, gln]= &[n—=5]
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Magnitude and Phase Response of A Pure-Delay “Filter”

— Zg[m]e—jwm — g—Jwmo
m
Notice that the magnitude and phase response of this filter are

IG( )=

£G(w) = —wng

So, for example, if have an input of x[n] = cos(wn), the output
would be

y[n] = |G(w)| cos (wn + £G(w)) = cos (wn — wng)
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@ Example: Delaying a Square Wave
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Magnitude and Phase Response of A Pure-Delay “Filter”

Here are the magnitude and phase response of the pure delay filter.

Impulse Response of a Pure-Delay Filter, gln]= &6[n—=15]
14
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Spectrum of a Square Wave

Wave of length 11, x[n]

Square
o L L 1111,
n B

] a
Magnitude Spectrum of the Square Wave, |X[K]|

T .

Phase Spectrum of the Square Wave, £X[k]

4 I T ‘
T wn e o
Frequeny  aa

Here are the Fourier series coefficients of an Ny = 11, L = 5,
even-symmetric square wave:
B sin(wL/2) B sin(2mkL/ Np)
~ sin(w/2) w22k ~ sin(2mk/Np)
0
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Response of a Filter when the Input is Periodic

And here's what happens when we pass a periodic signal through a
filter g[n]:
(No—1)/2
x[n] _ Z Xkej2ﬂ'kn/No

k=—Np/2
(No—1)/2 _
ylnl=" Y XkG(kwo)e>™ /Mo
k=—No/2

...where wg = %’; is the fundamental frequency.
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Spectrum: Delayed Square Wave

And here’s the result. This is the square wave, after being delayed
by the pure-delay filter:

Delayed Square Wave of length 11, y[n] = x[n = 5]
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Magnitude Spectrum of a Delayed Square Wave |Y[k]|

5

[ . .~ . .

Phase Spectrum of a Delayed Square Wave £Y[k]
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You can see that magnitude’s unchanged, but phase is changed.
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Spectrum of a Delayed Square Wave

Delayed Square Wave of length 11, y[n] = x{n - 5]
1

o n 2 3 s

lagnitude Spectrum of a Delayed Square Wave |Y[]|

T .

Phase Spectrum of a Delayed Square Wave £Y[k]

The Fourier series coefficients of a square wave, delayed by ng

samples, are
_ Sln(kLw0/2) e_jkanO
sin(kwo/2)

where wg = ?V—’;
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Cascaded LSI Systems

What happens if we pass the input through two LSI systems, in
cascade?

x[n] o g H o y[n]
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Cascaded filters

Suppose | pass the signal through filter g[n], then pass it through
another filter, h[n]:

yln] = hin] x (g[n] * x[n]) ,
we get a signal y[n] whose spectrum is:

Y (w) = Hw)G(w)X[K]



Convolution is Commutative

Notice that
Y(w) = Hw)G(w)X(w) = G(w)H(w)X(w)
and therefore:

y[nl = hln] * (g[n] * x[n]) = g[n] * (h[n] = x[n])
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Convolution is Commutative

Since convolution is commutative, these two circuits compute
exactly the same output:

x[n] g H o y[n]

x[n] o H G o y[n]
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Go to the course webpage, and try the quiz!
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Example: Differenced Square Wave

Suppose we define x[n] to be an 11-sample square wave, g[n] to be
a delay, and h[n] to be a first difference:

x[n] %5 z[n] = x[n — 5]

z[n] % y[n] = z[n] — z[n — 1]



Delayed Square Wave

x[n]

Cascades
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o y[n]

Here's what we get if we just delay the square wave:

Delayed Square Wave of length 11, y[n] = x[n = 5]
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Differenced Square Wave

x[n] o H o y[n]

Here's what we get if we just difference the square wave:

Differenced Square Wave, y[n]= x[n] — x[n — 1]
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Magnitude Spectrum of a Differenced Square Wave, |Y[k]
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Phase Spectrum of a Differenced Square Wave, £Y[k]
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Example: Differenced Delayed Square Wave

H o y[n]

x[n] o

g

Here's what we get if we delay and then difference the square

wave:

Delayed Differenced Square Wave, y[n]=x[n —5] —x[n —1

1
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Magnitude Spectrum of the DDS, |YTk]|
2 ®
L. ? 1]
Phase Spectrum of the DDS, £Y[k]
m
01 ® ? ?
3 s J.

M- T T T T T

0 211 4my11 6m/11 8n/11 10m/11

Eramiianeyg (1 (irafisnclfeammnla)



Cascades
00000000080

Example: Delayed Differenced Square Wave

H g o y[n]

x[n] o

Here's what we get if we difference and then delay the square
wave (hint: it's exactly the same as the previous slide!!)

Delayed Differenced Square Wave, y[n]l=x[n—=5]—x[n—1
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Magnitude and Phase of Cascaded Frequency Responses

In general, when you cascade two LS| systems, the magnitudes
multiply:
[ Yiel = [H(W)IIG(w)[ X,

but the phases add:
LYy = ZH(w) + £G(w) + £ Xk
That's because:

H(w)G(w) = [Hw)|&“ WG (w)[e“C) = [H(w)| G (w)|/“HEIT 26
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Summary

o Periodic inputs: If the input of an LSI system is periodic,

(No—1)/2 _
x[n] _ Z Xkej27rkn/No
k=—No/2

...then the output is

(No—1)/2 _
ylnl= Y XiH(kwo)e™ /Mo
k=—Np/2

e Cascaded LTI Systems convolve their impulse responses,
equivalently, they multiply their frequency responses:

y[n] = h[n] x g[n] = x[n], Yk = H(kwo)G (kwo)Xx
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