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DTFT

The DTFT (discrete time Fourier transform) of any signal is X (ω),
given by

X (ω) =
∞∑

n=−∞
x [n]e−jωn

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω

Properties worth knowing include:

Time Shift: x [n − n0]↔ e−jωn0X (ω)

Filtering is Convolution:

y [n] = h[n] ∗ x [n]↔ Y (ω) = H(ω)X (ω)
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Square Wave, Rectangular Window

Periodic x(t), with period T0:

x(t) =

{
1 −L

2 ≤ n ≤ L
2

0 otherwise

Xk =

{
L
T0

k = 0
sin(πkL/T0)

πk k 6= 0

Aperiodic x [n]:

dL[n] =

{
1 − (L−1)

2 ≤ n ≤ (L−1)
2

0 otherwise

DL(ω) =
sin(ωL/2)

sin(ω/2)
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Discrete-Time Square Wave, Rectangular Window

Periodic x [n], with period T0:

x [n] =

{
1 −L−1

2 < n < L−1
2

0 otherwise
↔ Xk =

{
L
T0

k = 0
sin(πkL/T0)
T0 sin(πk/T0)

k 6= 0
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Ideal Lowpass Filter

HLP(ω) =

{
1 |ω| ≤ ωc ,

0 ωc < |ω| ≤ π.
↔ hLP [m] =

ωc

π
sinc(ωcn)
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Review: DT Processing of CT Signals

A bandlimited periodic signal x(t) can be sampled, filtered, then
sinc-interpolated to create:

x(t) =
N∑

k=−N
Xke

j2πkF0t

x [n] =
N∑

k=−N
Xke

jkω0n,

y [n] =
N∑

k=−N
Yke

jkω0n,

y(t) =
N∑

k=−N
Yke

j2πkF0n,

where ω0 = 2πF0
Fs

, and N = bFs/2
F0
c, and Yk = H(kω0)Xk .
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Response of a Filter when the Input is Periodic

Now we’re ready to ask this question:

What is the output of a filter when the input, x [n], is periodic with
period N0?
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Response of a Filter when the Input is Periodic

1 Fourier Series: If the input is periodic, then we can write it as

x [n] =

(N0−1)/2∑
k=−N0/2

Xke
j2πkn/N0

2 Frequency Response: If the input is e jωn, then the output is

y [n] = H(ω)e jωn

3 Linearity (of convolution, and of frequency response): If
the input is x1[n] + x2[n], then the output is

y [n] = y1[n] + y2[n]
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Response of a Filter when the Input is Periodic

Putting all those things together, if the input is

x [n] =

(N0−1)/2∑
k=−N0/2

Xke
j2πkn/N0

. . . then the output is

y [n] =

(N0−1)/2∑
k=−N0/2

XkH(kω0)e j2πkn/N0

. . . where ω0 = 2π
N0

is the fundamental frequency.
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A Pure-Delay “Filter”

One thing we can do to a signal is to just delay it, by n0 samples:

y [n] = x [n − n0]

Even this very simple operation can be written as a convolution:

y [n] = g [n] ∗ x [n]

where the “filter,” g [n], is just

g [n] = δ[n − n0] =

{
1 n = n0

0 otherwise
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Frequency Response of A Pure-Delay “Filter”

g [n] =

{
1 n = n0

0 otherwise

The frequency response is

G (ω) =
∑
m

g [m]e−jωm = e−jωn0
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Impulse Response of A Pure-Delay “Filter”

Here is the impulse response of a pure-delay “filter” (and the
magnitude and phase responses, which we’ll talk about next).
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Magnitude and Phase Response of A Pure-Delay “Filter”

G (ω) =
∑
m

g [m]e−jωm = e−jωn0

Notice that the magnitude and phase response of this filter are

|G (ω)| = 1

∠G (ω) = −ωn0

So, for example, if have an input of x [n] = cos(ωn), the output
would be

y [n] = |G (ω)| cos (ωn + ∠G (ω)) = cos (ωn − ωn0)
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Magnitude and Phase Response of A Pure-Delay “Filter”

Here are the magnitude and phase response of the pure delay filter.
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Spectrum of a Square Wave

Here are the Fourier series coefficients of an N0 = 11, L = 5,
even-symmetric square wave:

Xk =
sin(ωL/2)

sin(ω/2)

∣∣∣∣
ω= 2πk

N0

=
sin(2πkL/N0)

sin(2πk/N0)
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Response of a Filter when the Input is Periodic

And here’s what happens when we pass a periodic signal through a
filter g [n]:

x [n] =

(N0−1)/2∑
k=−N0/2

Xke
j2πkn/N0

y [n] =

(N0−1)/2∑
k=−N0/2

XkG (kω0)e j2πkn/N0

. . . where ω0 = 2π
N0

is the fundamental frequency.
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Spectrum: Delayed Square Wave

And here’s the result. This is the square wave, after being delayed
by the pure-delay filter:

You can see that magnitude’s unchanged, but phase is changed.
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Spectrum of a Delayed Square Wave

The Fourier series coefficients of a square wave, delayed by n0
samples, are

Yk =
sin(kLω0/2)

sin(kω0/2)
e−jkω0n0

where ω0 = 2π
N0

.
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Cascaded LSI Systems

What happens if we pass the input through two LSI systems, in
cascade?

y [n]HGx [n]
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Cascaded filters

Suppose I pass the signal through filter g [n], then pass it through
another filter, h[n]:

y [n] = h[n] ∗ (g [n] ∗ x [n]) ,

we get a signal y [n] whose spectrum is:

Y (ω) = H(ω)G (ω)X [k]
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Convolution is Commutative

Notice that

Y (ω) = H(ω)G (ω)X (ω) = G (ω)H(ω)X (ω)

and therefore:

y [n] = h[n] ∗ (g [n] ∗ x [n]) = g [n] ∗ (h[n] ∗ x [n])



Review Periodic Signals Pure Delay Example Cascades Summary

Convolution is Commutative

Since convolution is commutative, these two circuits compute
exactly the same output:

y [n]HGx [n]

y [n]GHx [n]
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Quiz

Go to the course webpage, and try the quiz!
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Example: Differenced Square Wave

Suppose we define x [n] to be an 11-sample square wave, g [n] to be
a delay, and h[n] to be a first difference:

x [n] =

{
1 −2 ≤ n ≤ 2

0 3 ≤ n ≤ 8

x [n]
G−→ z [n] = x [n − 5]

z [n]
H−→ y [n] = z [n]− z [n − 1]
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Delayed Square Wave

y [n]Gx [n]

Here’s what we get if we just delay the square wave:
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Differenced Square Wave

y [n]Hx [n]

Here’s what we get if we just difference the square wave:
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Example: Differenced Delayed Square Wave

y [n]HGx [n]

Here’s what we get if we delay and then difference the square
wave:
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Example: Delayed Differenced Square Wave

y [n]GHx [n]

Here’s what we get if we difference and then delay the square
wave (hint: it’s exactly the same as the previous slide!!)
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Magnitude and Phase of Cascaded Frequency Responses

In general, when you cascade two LSI systems, the magnitudes
multiply:

|Yk | = |H(ω)||G (ω)||Xk |,

but the phases add:

∠Yk = ∠H(ω) + ∠G (ω) + ∠Xk

That’s because:

H(ω)G (ω) = |H(ω)|e j∠H(ω)|G (ω)|e j∠G(ω) = |H(ω)||G (ω)|e j(∠H(ω)+∠G(ω))
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Summary

Periodic inputs: If the input of an LSI system is periodic,

x [n] =

(N0−1)/2∑
k=−N0/2

Xke
j2πkn/N0

. . . then the output is

y [n] =

(N0−1)/2∑
k=−N0/2

XkH(kω0)e j2πkn/N0

Cascaded LTI Systems convolve their impulse responses,
equivalently, they multiply their frequency responses:

y [n] = h[n] ∗ g [n] ∗ x [n], Yk = H(kω0)G (kω0)Xk
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