DTFT	Ideal LPF	Ideal HPF	Ideal BPF	Summary

Lecture 18: Ideal Filters

Mark Hasegawa-Johnson These slides are in the public domain

ECE 401: Signal and Image Analysis

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

DTFT	Ideal LPF	Ideal HPF	Ideal BPF	Summary

▲□▶▲圖▶▲≣▶▲≣▶ ■ ● のへで

DTFT	ldeal LPF	ldeal HPF	ldeal BPF	Summary
●○○	000000000	0000000000	00000	00
Outline				

- 2 Ideal Lowpass Filter
- 3 Ideal Highpass Filter
- Ideal Bandpass Filter

DTFT	Ideal LPF	ldeal HPF	Ideal BPF	Summary
○●○	000000000	0000000000	00000	00
Review: D)TFT			

The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

Particular useful examples include:

$$f[n] = \delta[n] \leftrightarrow F(\omega) = 1$$
$$g[n] = \delta[n - n_0] \leftrightarrow G(\omega) = e^{-j\omega n_0}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Properties worth knowing include:

• Periodicity: $X(\omega + 2\pi) = X(\omega)$

Linearity:

$$z[n] = ax[n] + by[n] \leftrightarrow Z(\omega) = aX(\omega) + bY(\omega)$$

- 2 Time Shift: $x[n n_0] \leftrightarrow e^{-j\omega n_0} X(\omega)$
- Solution Frequency Shift: $e^{j\omega_0 n} x[n] \leftrightarrow X(\omega \omega_0)$
- Iltering is Convolution:

$$y[n] = h[n] * x[n] \leftrightarrow Y(\omega) = H(\omega)X(\omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

DTFT	ldeal LPF	ldeal HPF	Ideal BPF	Summary
000	●○○○○○○○	0000000000	00000	00
Outline				

1 Review: DTFT

- 2 Ideal Lowpass Filter
- 3 Ideal Highpass Filter
- Ideal Bandpass Filter



DTFT	ldeal LPF	ldeal HPF	Ideal BPF	Summary
000	○●○○○○○○○	0000000000	00000	00
What is	"Ideal"?			

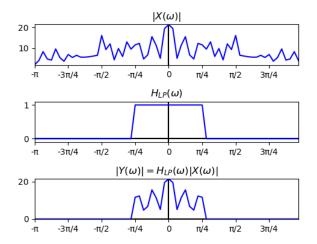
The definition of "ideal" depends on your application. Let's start with the task of lowpass filtering. Let's define an ideal lowpass filter, $Y(\omega) = H_{LP}(\omega)X(\omega)$, as follows:

$$Y(\omega) = egin{cases} X(\omega) & |\omega| \leq \omega_c, \ 0 & ext{otherwise}, \end{cases}$$

where ω_c is some cutoff frequency that we choose. For example, to de-noise a speech signal we might choose $\omega_c = 2\pi 2400/F_s$, because most speech energy is below 2400Hz. This definition gives:

$$H_{LP}(\omega) = egin{cases} 1 & |\omega| \leq \omega_c \ 0 & ext{otherwise} \end{cases}$$

DTFT	ldeal LPF	ldeal HPF	Ideal BPF	Summary
000	⊙o●oooooo	0000000000	00000	00
Ideal Lo	wpass Filter			



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- Use np.fft.fft to find X[k], set Y[k] = X[k] only for $\frac{2\pi k}{N} < \omega_c$, then use np.fft.ifft to convert back into the time domain?
 - It sounds easy, but...
 - np.fft.fft is finite length, whereas the DTFT is infinite length. Truncation to finite length causes artifacts.
- **②** Use pencil and paper to inverse DTFT $H_{LP}(\omega)$ to $h_{LP}[n]$, then use np.convolve to convolve $h_{LP}[n]$ with x[n].
 - It sounds more difficult.
 - But actually, we only need to find $h_{LP}[n]$ once, and then we'll be able to use the same formula for ever afterward.
 - This method turns out to be both easier and more effective in practice.

The ideal LPF is

$$egin{aligned} \mathcal{H}_{LP}(\omega) = egin{cases} 1 & |\omega| \leq \omega_c \ 0 & ext{otherwise} \end{aligned}$$

The inverse DTFT is

$$h_{LP}[n] = rac{1}{2\pi} \int_{-\pi}^{\pi} H_{LP}(\omega) e^{j\omega n} d\omega$$

Combining those two equations gives

$$h_{LP}[n] = rac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

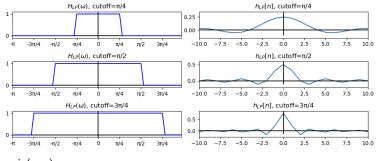
DTFT	ldeal LPF	ldeal HPF	Ideal BPF	Summary
000	○000000000	೦೦೦೦೦೦೦೦೦೦	00000	00
Solving th	e integral			

The ideal LPF is

$$h_{LP}[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$

= $\frac{1}{2\pi} \left(\frac{1}{jn}\right) \left[e^{j\omega n}\right]_{-\omega_c}^{\omega_c}$
= $\frac{1}{2\pi} \left(\frac{1}{jn}\right) (2j\sin(\omega_c n))$
= $\frac{\sin(\omega_c n)}{\pi n}$
= $\left(\frac{\omega_c}{\pi}\right) \operatorname{sinc}(\omega_c n)$

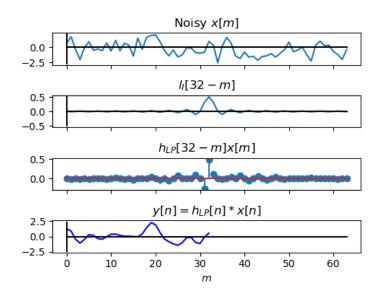
DTFT	ldeal LPF	ldeal HPF	Ideal BPF	Summary
000	○00000●00	0000000000	00000	00
$h_{LP}[n] =$	$= \frac{\sin(\omega_c n)}{\pi n}$			



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\frac{\sin(\omega_c n)}{\pi n}$ is undefined when n = 0
- $\lim_{n\to 0} \frac{\sin(\omega_c n)}{\pi n} = \frac{\omega_c}{\pi}$
- So let's define $h_{LP}[0] = \frac{\omega_c}{\pi}$.

Ideal LPF Ideal BPF 000000000 $h_{LP}[n] = \frac{\omega_c}{\pi} \operatorname{sinc}(\omega_c n)$



DTFT	ldeal LPF	ldeal HPF	Ideal BPF	Summary
000	○0000000●	೦೦೦೦೦೦೦೦೦೦	00000	00
Quiz				

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Go to the course web page, and try the quiz!

DTFT	ldeal LPF	ldeal HPF	ldeal BPF	Summary
000	000000000	●0000000000	00000	00
Outline				

1 Review: DTFT

- 2 Ideal Lowpass Filter
- 3 Ideal Highpass Filter
- Ideal Bandpass Filter

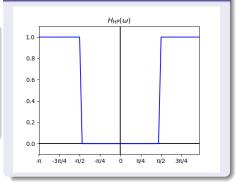
DTFT	Ideal LPF	Ideal HPF	Ideal BPF	Summary
		000000000		

Ideal Highpass Filter

Ideal Highpass Filter

An ideal high-pass filter passes all frequencies above ω_c :

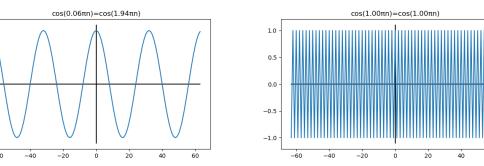
$$H_{HP}(\omega) = egin{cases} 1 & |\omega| > \omega_c \ 0 & ext{otherwise} \end{cases}$$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

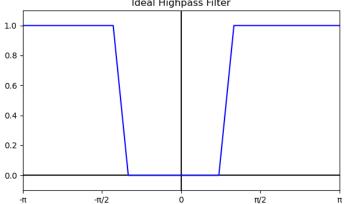
... except for one problem: aliasing. The highest frequency, in discrete time, is $\omega = \pi$. Frequencies that

seem higher, like $\omega = 1.1\pi$, are actually lower. This phenomenon is called "aliasing."



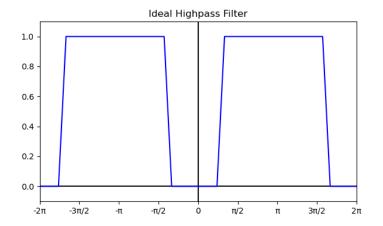
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Here's how an ideal HPF looks if we only plot from $-\pi \le \omega \le \pi$:



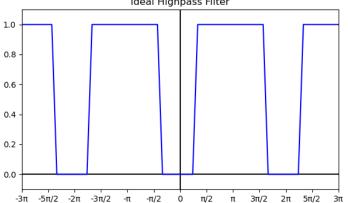
Ideal Highpass Filter

Here's how an ideal HPF looks if we plot from $-2\pi \leq \omega \leq 2\pi$:



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Here's how an ideal HPF looks if we plot from $-3\pi \le \omega \le 3\pi$:



Ideal Highpass Filter

Let's redefine "lowpass" and "highpass." The ideal LPF is

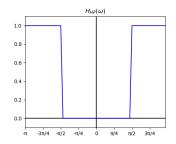
$$egin{aligned} \mathcal{H}_{LP}(\omega) &= egin{cases} 1 & |\omega| \leq \omega_{m{c}}, \ 0 & \omega_{m{c}} < |\omega| \leq \pi. \end{aligned}$$

The ideal HPF is

$$H_{HP}(\omega) = egin{cases} 0 & |\omega| < \omega_c, \ 1 & \omega_c \leq |\omega| \leq \pi. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Both of them are periodic with period 2π .



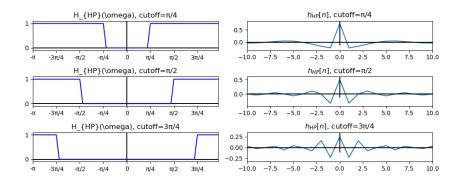
The easiest way to find $h_{HP}[n]$ is to use linearity:

$$H_{HP}(\omega) = 1 - H_{LP}(\omega)$$

Therefore:

$$h_{HP}[n] = \delta[n] - h_{LP}[n]$$
$$= \delta[n] - \frac{\omega_c}{\pi} \operatorname{sinc}(\omega_c n)$$

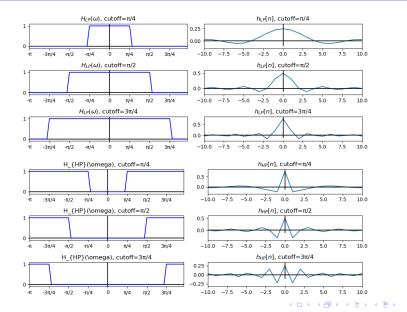
▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで



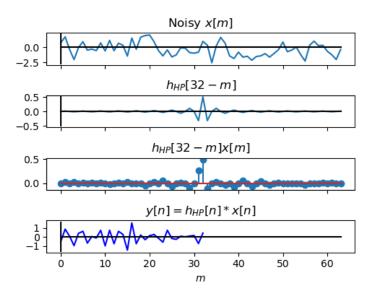
▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Ideal LPF Ideal HPF Ideal BPF 0000000000

Comparing highpass and lowpass filters



= nar



DTFT	Ideal LPF	ldeal HPF	ldeal BPF	Summary
000	00000000	0000000000	●○○○○	00
Outline				

1 Review: DTFT

- 2 Ideal Lowpass Filter
- 3 Ideal Highpass Filter
- Ideal Bandpass Filter



DTFT	Ideal LPF	Ideal HPF	Ideal BPF	Summary
			00000	

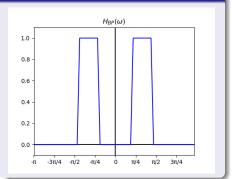
Ideal Bandpass Filter

An ideal band-pass filter passes all frequencies between ω_1 and ω_2 :

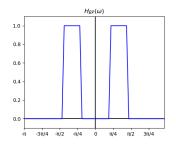
$$\mathcal{H}_{BP}(\omega) = egin{cases} 1 & \omega_1 \leq |\omega| \leq \omega_2 \ 0 & ext{otherwise} \end{cases}$$

(and, of course, it's also periodic with period 2π).

Ideal Bandpass Filter



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

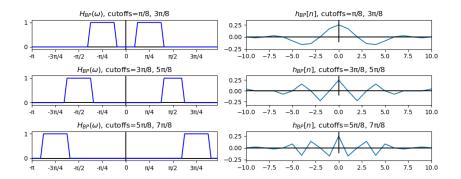


The easiest way to find $h_{BP}[n]$ is to use linearity:

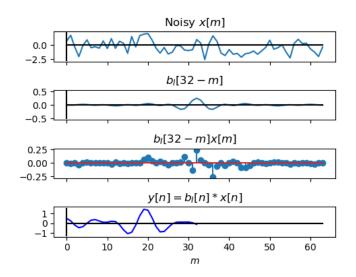
$$H_{BP}(\omega) = H_{LP,\omega_2}(\omega) - H_{LP,\omega_1}(\omega)$$

Therefore:

$$h_{BP}[n] = \frac{\omega_2}{\pi} \operatorname{sinc}(\omega_2 n) - \frac{\omega_1}{\pi} \operatorname{sinc}(\omega_1 n)$$



 $\begin{array}{cccc} \begin{array}{c} \text{DTFT} & \text{Ideal LPF} & \text{Ideal HPF} & \text{Ideal BPF} \\ \text{OCOO} & \text{OCOOOOOOO} & \text{OCOOOOOOO} \end{array} \end{array}$



DTFT	ldeal LPF	Ideal HPF	Ideal BPF	Summary
000	000000000	0000000000	00000	●○
Outline				

1 Review: DTFT

- 2 Ideal Lowpass Filter
- 3 Ideal Highpass Filter
- Ideal Bandpass Filter

DTFT Ideal LPF Ideal HPF Ideal BPF Summary Summary: Ideal Filters Ideal Filters Ideal PF Ideal PF

• Ideal Lowpass Filter:

$$H_{LP}(\omega) = \begin{cases} 1 & |\omega| \le \omega_c, \\ 0 & \omega_c < |\omega| \le \pi. \end{cases} \quad \leftrightarrow \quad h_{LP}[m] = \frac{\omega_c}{\pi} \operatorname{sinc}(\omega_c n)$$

Ideal Highpass Filter:

 $H_{HP}(\omega) = 1 - H_{LP}(\omega) \quad \leftrightarrow \quad h_{HP}[n] = \delta[n] - \frac{\omega_c}{\pi} \operatorname{sinc}(\omega_c n)$

• Ideal Bandpass Filter:

$$H_{BP}(\omega) = H_{LP,\omega_2}(\omega) - H_{LP,\omega_1}(\omega)$$

$$\leftrightarrow h_{BP}[n] = \frac{\omega_2}{\pi} \operatorname{sinc}(\omega_2 n) - \frac{\omega_1}{\pi} \operatorname{sinc}(\omega_1 n)$$