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Review: DTFT

The DTFT (discrete time Fourier transform) of any signal is X (w),
given by

oo

X(w)= > x[n]e*"

n=—0o0

x[n] = % X(w)e dw

—T
Particular useful examples include:

f[n] = 6[n] © F(w) =1

glnl = 6[n — no] ¢ G(w) = e~
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Properties of the DTFT

Properties worth knowing include:
@ Periodicity: X(w + 27) = X(w)
©Q Linearity:

z[n] = ax[n] + by[n] <> Z(w) = aX(w) + bY (w)

@ Time Shift: x[n — ng] <+ e+ X (w)
© Frequency Shift: e/“°"x[n] <+ X(w — wp)
@ Filtering is Convolution:

y[n] = h[n] * x[n] <> Y(w) = H(w)X(w)
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What is “ldeal”?

The definition of “ideal” depends on your application. Let's start
with the task of lowpass filtering. Let's define an ideal lowpass
filter, Y(w) = H p(w)X(w), as follows:

V(o) = {X(w) ] < we,

0 otherwise,

where w, is some cutoff frequency that we choose. For example, to
de-noise a speech signal we might choose w. = 272400/ Fs,
because most speech energy is below 2400Hz. This definition gives:

1 |w| <we
H;p(w) = -
tp(w) {0 otherwise
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Ideal Lowpass Filter

IX(w)]
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How can we implement an ideal LPF?

@ Use np.fft.fft to find X[k], set Y[k] = X[k] only for
% < We, then use np.fft.ifft to convert back into the
time domain?
e It sounds easy, but...
o np.fft.fft is finite length, whereas the DTFT is infinite
length. Truncation to finite length causes artifacts.
@ Use pencil and paper to inverse DTFT H;p(w) to hyp[n],
then use np.convolve to convolve h;p[n] with x[n].
e It sounds more difficult.
o But actually, we only need to find h;p[n] once, and then we'll
be able to use the same formula for ever afterward.
e This method turns out to be both easier and more effective in
practice.
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Inverse DTFT of H p(w)

The ideal LPF is

1 |w] € we
Hip(w) = -
tp(w) {0 otherwise

The inverse DTFT is

I ;
th[n] = / HLp(w)ef””dw

27 J_,

Combining those two equations gives

1w .
th[n] = 27T/ e“"dw
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Solving the integral

The ideal LPF is

1 e
hLP[n]:%/ e dw

1 (1Y o
:27r<jn i

)
— 5 () Gisintecn)
)

= <%> sinc(wen)
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hLP[n] _ singrwcn)
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hip[n] = “=sinc(wcn)
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Go to the course web page, and try the quiz!
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Ideal Highpass Filter

Hyplw)

Ideal Highpass Filter

1.0

An ideal high-pass filter passes all
frequencies above we:

1 |w| > we 04
Hyp(w) =
e (w) 0 otherwise 021

- B4 w2 /4 0 4 w2 3n/4
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|deal Highpass Filter

... except for one problem: aliasing.

The highest frequency, in discrete time, is w = 7. Frequencies that
seem higher, like w = 1.1, are actually lower. This phenomenon is
called “aliasing.”

cos(0.06nn)=cos(1.94nn) cos(1.00nn)=cos(1.00mn)
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|deal Highpass Filter

Here's how an ideal HPF looks if we only plot from —7 < w < 7

Ideal Highpass Filter
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|deal Highpass Filter

Here's how an ideal HPF looks if we plot from —27 < w < 2m:

Ideal Highpass Filter
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|deal Highpass Filter

Here's how an ideal HPF looks if we plot from —37 < w < 3m:

Ideal Highpass Filter
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Redefining “Lowpass” and “Highpass”

Let's redefine “lowpass” and “highpass.” The ideal LPF is

Hop(w) 1 |w| <we,
w) =
P 0 we<|w| <.

The ideal HPF is

0 |w| < we,
H —
e () {1 we < |w| < 7.

Both of them are periodic with period 2.
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Inverse DTFT of Hyp(w)

Hip(w)

10
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The easiest way to find hyp[n] is to use linearity:
HHp(w) =1- HLp(w)
Therefore:

th[n] = 5[[7] - th[n]

= 0[n] — %sinc(wcn)
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“esinc(wcn)
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Comparing highpass and lowpass filters
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hup[n] = 6[n] — Z=sinc(wcn)

MNoisy x[m]
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Ideal Bandpass Filter
Ideal Bandpass Filter

An ideal band-pass filter passes all Pl (@)
frequencies between w; and wo: =
oo
1 w1 f; ’CU‘ f; w9 0.6 4
Hpp(w) = .
0 otherwise 04]

(and, of course, it's also periodic
with period 27).

4 - B4 w2 /4 0 4 w2 3n/4
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Inverse DTFT of Hgp(w)

Hgp(w)
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The easiest way to find hgp[n] is to use linearity:
Hep(w) = Hip w,(w) — Hip w (W)
Therefore:

hgp[n] = %sinc(wgn) — %sinc(wln)
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hgp[n] = “2sinc(wzn) — “sinc(wyn)

Hep(w), cutoffs=m/8, 3n/8

hgp[n], cutoffs=n/8, 3n/8
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“2sinc(wan) — “sinc(win)
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Summary: Ideal Filters

o Ideal Lowpass Filter:

1 |w| <we, We .
ol = {o LJQ wl<n O uplml= osinc(wen)

o Ideal Highpass Filter:
Hup(w) =1 — Hip(w) < hupln] = 8[n] — “Esinc(wen)
™
o Ideal Bandpass Filter:

Hep(w) = Hipw,(w) — Hip w, (w)

<hgp[n] = gsinc(wzn) - ﬂsinc(wln)
77 T
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