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Review: Convolution

@ A convolution is exactly the same thing as a weighted local
average. We give it a special name, because we will use it
very often. It's defined as:

ylnl =) glmlfln—m] =) gln— m]f[m]

@ We use the symbol * to mean “convolution:”

ylnl = glnl * fln] = _ glmlf[n—m] = gln— m]f[m]
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Frequency Response

@ Tones in — Tones out

x[n] = &“" = y[n] = G(w)e"
x[n] = cos (wn) — y[n] = |G(w)]| cos (wn + £G(w))
x[n] = Acos (wn + 6) — y[n] = A|G(w)|cos (wn+ 0 + £G(w))

@ where the Frequency Response is given by

G(w) =) _glmle ™
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Review: Fourier Series

In continuous time, any periodic signal can be written as

X(t Z X ej27rkFot

k=—00

where

1 [To .
Xic = / x(t)eI2mkFot gt
To Jo
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Review: DT Processing of CT Signals

A bandlimited periodic signal x(t) can be sampled, filtered, then
sinc-interpolated to create:

N
— Z XkejZTrkFot

k=—N

N
X[l =) Xeeleon,

k=—N

N
yll = > Yo,

k=—N

N
— Z YkeJZﬂ'kan,

k=—N

where wg = 2o and N = L

F Fo J, and Yk = H(ka)Xk.
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© Review: Continuous Time Square Wave



Let's use a square wave with a nonzero DC value, like this one:

Square wave example

A5T0  TOo  TOR o TO2 TO 15T0
Time (seconds)

1 —Lct<t
— 2 2
x(t) { 0 otherwise

...where L is the length of the nonzero part, in seconds.
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Fourier Series

Analysis (finding the spectrum, given the waveform):

Xk_{Tof?rﬁz x(t)d k=0
+ f 3{52 t —_]27'('kt/T0dt k ?é 0
_{%—OIL{Zdt k=0
— % f_Lﬁz e_jzwkt/Todt k 75 0

+ k=0
— 0
— ) sin(wkL/ Ty) k 7& 0

7k
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© Discrete Time Square Wave



Discrete-Time Fourier Series

A signal that's periodic in discrete time also has a Fourier series. If
the signal is periodic with a period of Ny = TgoFs samples, then its
Fourier series is

No—1 ' (Np—1)/2 '
x[n] — Z Xkej27rkn/No _ Z Xkej27rkn/N0
k=0 k=—Np/2

and the Fourier analysis formula is

No/2—1
Xe = — Z X[n]efj27rkn/No
n=—Np/2



Example: Spectrum of a Square Wave

For example, here's an even-symmetric (x[n] = x[—n]) square wave
with a period of Mg = 11 samples and a length of L =5 samples,
ie, x[n] =1 for -1 < n< 5L

Square Wave of length 11, x[n]

MM Immmr

0 11 22 33 44

Magnitude Spectrum of the Square Wave, |X[k]|

[ . » . .

Phase Spectrum of the Sguare Wave, £X[k]
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Spectrum of a Square Wave

The Fourier series coefficients of this square wave are

NOZ N0/2 x[n]eJ””/N0 k #0
_ {No Z(LLl)l/22 k=0
— L Z(L Ll)l/)2/ —_j27‘('kn/N0 k ?é 0



Spectrum of a Square Wave

The Fourier series coefficients of this square wave are
approximately, but not exactly, the same as they would be in the
continuous-time case:

~ k=0

i kL /N
S|n(7r7rk/ o) k0

Xk

Q

Square Wave of length 11, x[n]

1-
0 m
0 11 22 33 44

Magnitude Spectrum of the Square Wave, |X[k]|

[ . » . .

Phase Spectrum of the Sguare Wave, £X[k]
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Square Wave of length 11, x[n]

| [

1 22 3; a4

Magnitude Spectrum of the Square Wave, |X[K]|

...

Phase Spectrum of the Square Wave, ZX[K]

0

0 2m/11 411 6m/11 8wll  10m1l
Frequency w (radians/sample)

Notice that, for the phase spectrum of a square wave, the phase
spectrum is either ZX[k] = 0 or ZX[k] = w. That means that the
spectrum is real-valued, with no complex part:

e Positive real: X[k] = |X[K]|

o Negative real: X[k] = —|X[K]| = |X[K]|e/™



Having discovered that the square wave has a real-valued X[k], we
could just plot X[k] itself, instead of plotting its magnitude and
phase:

Square Wave of length 11, x[n]

Spectrum of the Square Wave, X[k]

27 [
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0 2n/11 411 6m/11 8n/l11 10m/11
Frequency w (radians/sample)




Fourier Series and Fourier Transform

Notice that, for both the continuous-time and discrete-time Fourier
series, the square wave has three basic properties:

@ Xp is just the average value of x(t).
@ Xy is (exactly or approximately) sin(mwkL/ Ty)/mk.
@ If the square wave is symmetric in time, then Xy is real-valued.

Now let's see how those properties generalize to the DTFT of a
non-periodic rectangle.
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@ The Local Averaging Filters
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Local Average Filters

Let's go back to the local averaging filter. | want to define two
different types of local average: centered, and delayed.

o Centered local average: This one averages (552) future

samples, (£51) past samples, and x[n]:
L)
ORI S
)

e Causal local average: This one averages x[n] and L — 1 of
its past samples:

1 L-1
yaln] = 7 > x[n—m]
m=0

Notice that yq4[n] = yc [n — (%)]
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Local Average Filters

We can write both of these as filters:

e Centered local average:

Yeln] = fe[n] = x[n]
fc[n] _ {ll_ B (%) <n< (%)

0 otherwise

e Causal local average:

yaln] = fa[n] * x[n]

1

+ 0<n<L-1
fd[n] =L -

0 otherwise
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Local Average Filters

Impulse response f:[n] of a centered local averaging filte
PPP0000000P

0.075 ~

0.050 ~

0.025 A

0.000 {_ 0996008000 -8-0-0-0-00-000
T T T T

Impulse response fgln] of a delayed local averaging filte
(T I XX XXXXXX]

0.075 A
0.050 A
0.025 -

0.000 1_6-0-0-0-0-0-0-0-0-0-0-0-0-0-0 - 8-000
T T T

Notice that fy[n] = fz [n — (%)]
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The relationship between centered local average and

delayed local average

Notice that f,[n] = f.[n — L51]. We can find the relationship

between their DTFTs using variable substitution, with the variable
—_ L-1.
m=n— =5=:

Fa(w)= Y fylnle 9"

n=—00
- L-1 —jwn

:n—z_oo fC[n_ 2 ]e J

N Z fc[m]e_j‘“m

m=—0o0

= e 1'% Fo(w)
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The frequency response of a local average filter

Let's find the frequency response of

1

+ 0<m<L-1
fd[n] =L - o

0 otherwise

The formula is

Fa(w) =) flmle/m,

SO,
L-1 )
Fa(w) = Zedom

~l=

3
I
o
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The frequency response of a local average filter

1 .
e—Jwm

~I|

L-1
Faw)=Y_
m=0

This is just a standard geometric series,

L-1 L
m_ Ll—a

a —
1—a’

m=0

1(1— et
Falw) =1 <1_>

SO:
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The frequency response of a local average filter

We now have an extremely useful transform pair:

1 —jwlL
+ 0<m<L-1 1 /1—e™
alr] {0 otherwise ¢() L ( 1—ew >

Let's attempt to convert that into polar form, so we can find
magnitude and phase response. Notice that both the numerator
and the denominator are subtractions of complex numbers, so we
might be able to use 2jsin(x) = e — e for some x. Let's try:

1/1— efij 1 efij/Z ejc;.}L/2 _ efij/2
L ( 1— e > T L w2 \ a2 — eiw/2

()1 2jsin(wl/2)
= e )Z ( 2jsin(w/2) )

= ()] (s;((c:ﬁ/ﬁ)))
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Go to the course web page, and try the quiz!
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The frequency response of a local average filter

Now we have Fy(w) in almost magnitude-phase form:

I m - sin(w -1
faln] = {é gtferwifeL 1 & Falw) = <L5|(n(://§))> e_Jw(T)

By the way, remember we discovered that
Fa(w) = e 7(55) Fo(w)

Notice anything?
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DTFT of Local Averaging Filters

o Centered local average:

fo[n] = {i o (%) =n< (%)
0 otherwise
_ sin(wL/2)
Felw) = Ton(w2)

e Causal local average:

L —

1 o<n<iL-1 sin(wL/2) (st
folnl = {0 otherwise Folw) = LSin(W/Q)e =)
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© Rectangular Windows



Rectangles
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DTFT of Rectangular Window

The local summing filter is just a scaled version of the local
averaging filter. It is commonly called the “rectangular window,”
for reasons that we'll explore in future lectures.

o Centered rectangular window:

W[n]—{l _(%)Sng(%)

0 otherwise
_sin(wL/2)
e Sy

e Causal rectangular window:

~J1 0<n<L-1 _sin(wL/2)e_jw L1
waln] = {0 otherwise Wolw) = sin(w/2) =)
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Dirichlet form

Of all four of these signals, the centered rectangular window has
the simplest DTFT. The textbook calls this signal the “Dirichlet

form:” in(wl/2)
sin(w
D =—"2
@) = @ 2)
That is, exactly, the frequency response of a centered rectangular
window:

1 —(F)=n< (%)

0 otherwise

di[n] = weln] = {
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Dirichlet form

Here's what it looks like:

Centered local sum filter (Dirichlet form), di1[n]

1.0
0.5
0.0
-15 -10 -5 0 5 10 15
Dirichlet Form D11(w)
10
5 -
/-_-—-""-. —_—
04 NP s == -z
: : : . . .
0 2111 a1l 6m/11 swmll  10m/11

Frequency w (radians/sample)
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Dirichlet form

Since every local averaging filter is based on Dirichlet form, it's
worth spending some time to understand it better.

sin(wl/2)

Du(w) = sin(w/2)

@ It's equal to zero every time wL /2 is a multiple of . So

27k
D, < 7; > =0 for all integers k except k =0

e At w = 0, the value of S'n((”L/Qz)) is undefined, but it's posssible

to prove that lim,_0 D;(w) = L. To make life easy, we'll just
define it that way:

DEFINE: D,(0) =L
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Dirichlet form

Here's what it looks like:

Centered local sum filter (Dirichlet form), di1[n]

1.0
0.5
0.0
-15 -10 -5 0 5 10 15
Dirichlet Form D11(w)
10
5 -
/-_-—-""-. —_—
04 NP s == -z
: : : . . .
0 2111 a1l 6m/11 swmll  10m/11

Frequency w (radians/sample)
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Local averaging filter

Here's what the centered local averaging filter looks like. Notice
that it's just 1/L times the Dirichlet form:

Centered local average filter, f[n]
PP000000000

0.075 A
0.050 A
0.025 A

0.000 A

-15 -10 -5 0 5 10 15

Magnitude Response of centered local averager, Fe-(w)
1.0 A

0.5 A

0.0 \//\_/’*‘“ =

T T T T T
0 2nf11 Inf11 6n/1l am/ll 10m/11
Frequency w (radians/sample)
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Summary: DTFTs of Rectangular Windows

@ The Centered Local Averaging Filter is 1/L times the
Dirichlet form:

I —(F) sz (B sin(w
f"[”]:{é e 7)o R = D

e The Causal Local Averaging Filter is f.[n], delayed by %
samples:

1 o<n<iL—1 sin(wL/2) (L1
faln] = £ . <~ F, _ SIMWE/2) —jw(43)
alrl {0 otherwise a(w) Lsm(w/2)e
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