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Review: Convolution

A convolution is exactly the same thing as a weighted local
average. We give it a special name, because we will use it
very often. It’s defined as:

y [n] =
∑
m

g [m]f [n −m] =
∑
m

g [n −m]f [m]

We use the symbol ∗ to mean “convolution:”

y [n] = g [n] ∗ f [n] =
∑
m

g [m]f [n −m] =
∑
m

g [n −m]f [m]
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Frequency Response

Tones in → Tones out

x [n] = e jωn → y [n] = G (ω)e jωn

x [n] = cos (ωn)→ y [n] = |G (ω)| cos (ωn + ∠G (ω))

x [n] = A cos (ωn + θ)→ y [n] = A|G (ω)| cos (ωn + θ + ∠G (ω))

where the Frequency Response is given by

G (ω) =
∑
m

g [m]e−jωm
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Review: Fourier Series

In continuous time, any periodic signal can be written as

x(t) =
∞∑

k=−∞
Xke

j2πkF0t ,

where

Xk =
1

T0

∫ T0

0
x(t)e−j2πkF0tdt
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Review: DT Processing of CT Signals

A bandlimited periodic signal x(t) can be sampled, filtered, then
sinc-interpolated to create:

x(t) =
N∑

k=−N
Xke

j2πkF0t

x [n] =
N∑

k=−N
Xke

jkω0n,

y [n] =
N∑

k=−N
Yke

jkω0n,

y(t) =
N∑

k=−N
Yke

j2πkF0n,

where ω0 = 2πF0
Fs

, and N = bFs/2
F0
c, and Yk = H(kω0)Xk .
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Square wave example

Let’s use a square wave with a nonzero DC value, like this one:

x(t) =

{
1 −L

2 < t < L
2

0 otherwise

. . . where L is the length of the nonzero part, in seconds.
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Fourier Series

Analysis (finding the spectrum, given the waveform):

Xk =

{
1
T0

∫ T0/2
−T0/2

x(t)dt k = 0
1
T0

∫ T0/2
−T0/2

x(t)e−j2πkt/T0dt k 6= 0

=

{
1
T0

∫ L/2
−L/2 dt k = 0

1
T0

∫ L/2
−L/2 e

−j2πkt/T0dt k 6= 0

=

{
L
T0

k = 0
sin(πkL/T0)

πk k 6= 0
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Discrete-Time Fourier Series

A signal that’s periodic in discrete time also has a Fourier series. If
the signal is periodic with a period of N0 = T0Fs samples, then its
Fourier series is

x [n] =

N0−1∑
k=0

Xke
j2πkn/N0 =

(N0−1)/2∑
k=−N0/2

Xke
j2πkn/N0

and the Fourier analysis formula is

Xk =
1

N0

N0/2−1∑
n=−N0/2

x [n]e−j2πkn/N0
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Example: Spectrum of a Square Wave

For example, here’s an even-symmetric (x [n] = x [−n]) square wave
with a period of N0 = 11 samples and a length of L = 5 samples,
i.e., x [n] = 1 for −L−1

2 ≤ n ≤ L−1
2 :
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Spectrum of a Square Wave

The Fourier series coefficients of this square wave are

Xk =

{
1
N0

∑N0/2−1
−N0/2

x [n] k = 0
1
N0

∑N0/2−1
−N0/2

x [n]e−j2πkn/N0 k 6= 0

=

{
1
N0

∑(L−1)/2
−(L−1)/2 1 k = 0

1
N0

∑(L−1)/2
−(L−1)/2 e

−j2πkn/N0 k 6= 0
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Spectrum of a Square Wave

The Fourier series coefficients of this square wave are
approximately, but not exactly, the same as they would be in the
continuous-time case:

Xk ≈

{
L
N0

k = 0
sin(πkL/N0)

πk k 6= 0
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More about the phase spectrum

Notice that, for the phase spectrum of a square wave, the phase
spectrum is either ∠X [k] = 0 or ∠X [k] = π. That means that the
spectrum is real-valued, with no complex part:

Positive real: X [k] = |X [k]|
Negative real: X [k] = −|X [k]| = |X [k]|e jπ
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More about the phase spectrum

Having discovered that the square wave has a real-valued X [k], we
could just plot X [k] itself, instead of plotting its magnitude and
phase:
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Fourier Series and Fourier Transform

Notice that, for both the continuous-time and discrete-time Fourier
series, the square wave has three basic properties:

X0 is just the average value of x(t).

Xk is (exactly or approximately) sin(πkL/T0)/πk .

If the square wave is symmetric in time, then Xk is real-valued.

Now let’s see how those properties generalize to the DTFT of a
non-periodic rectangle.
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Local Average Filters

Let’s go back to the local averaging filter. I want to define two
different types of local average: centered, and delayed.

Centered local average: This one averages
(
L−1
2

)
future

samples,
(
L−1
2

)
past samples, and x [n]:

yc [n] =
1

L

( L−1
2 )∑

m=−( L−1
2 )

x [n −m]

Causal local average: This one averages x [n] and L− 1 of
its past samples:

yd [n] =
1

L

L−1∑
m=0

x [n −m]

Notice that yd [n] = yc
[
n −

(
L−1
2

)]
.
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Local Average Filters

We can write both of these as filters:

Centered local average:

yc [n] = fc [n] ∗ x [n]

fc [n] =

{
1
L −

(
L−1
2

)
≤ n ≤

(
L−1
2

)
0 otherwise

Causal local average:

yd [n] = fd [n] ∗ x [n]

fd [n] =

{
1
L 0 ≤ n ≤ L− 1

0 otherwise
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Local Average Filters

Notice that fd [n] = fc
[
n −

(
L−1
2

)]
.
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The relationship between centered local average and
delayed local average

Notice that fd [n] = fc [n − L−1
2 ]. We can find the relationship

between their DTFTs using variable substitution, with the variable
m = n − L−1

2 :

Fd(ω) =
∞∑

n=−∞
fd [n]e−jωn

=
∞∑

n=−∞
fc [n − L− 1

2
]e−jωn

= e−jω
L−1
2

∞∑
m=−∞

fc [m]e−jωm

= e−jω
L−1
2 Fc(ω)
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The frequency response of a local average filter

Let’s find the frequency response of

fd [n] =

{
1
L 0 ≤ m ≤ L− 1

0 otherwise

The formula is
Fd(ω) =

∑
m

f [m]e−jωm,

so,

Fd(ω) =
L−1∑
m=0

1

L
e−jωm
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The frequency response of a local average filter

Fd(ω) =
L−1∑
m=0

1

L
e−jωm

This is just a standard geometric series,

L−1∑
m=0

am =
1− aL

1− a
,

so:

Fd(ω) =
1

L

(
1− e−jωL

1− e−jω

)
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The frequency response of a local average filter

We now have an extremely useful transform pair:

fd [n] =

{
1
L 0 ≤ m ≤ L− 1

0 otherwise
↔ Fd(ω) =

1

L

(
1− e−jωL

1− e−jω

)
Let’s attempt to convert that into polar form, so we can find
magnitude and phase response. Notice that both the numerator
and the denominator are subtractions of complex numbers, so we
might be able to use 2j sin(x) = e jx − e−jx for some x . Let’s try:

1

L

(
1− e−jωL

1− e−jω

)
=

1

L

e−jωL/2

e−jω/2

(
e jωL/2 − e−jωL/2

e jω/2 − e−jω/2

)

= e−jω( L−1
2 ) 1

L

(
2j sin(ωL/2)

2j sin(ω/2)

)
= e−jω( L−1

2 ) 1

L

(
sin(ωL/2)

sin(ω/2)

)
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Quiz

Go to the course web page, and try the quiz!



Review CT DT Averaging Rectangles Summary

The frequency response of a local average filter

Now we have Fd(ω) in almost magnitude-phase form:

fd [n] =

{
1
L 0 ≤ m ≤ L− 1

0 otherwise
↔ Fd(ω) =

(
sin(ωL/2)

L sin(ω/2)

)
e−jω( L−1

2 )

By the way, remember we discovered that

Fd(ω) = e−jω( L−1
2 )Fc(ω)

Notice anything?
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DTFT of Local Averaging Filters

Centered local average:

fc [n] =

{
1
L −

(
L−1
2

)
≤ n ≤

(
L−1
2

)
0 otherwise

Fc(ω) =
sin(ωL/2)

L sin(ω/2)

Causal local average:

fd [n] =

{
1
L 0 ≤ n ≤ L− 1

0 otherwise
Fd(ω) =

sin(ωL/2)

L sin(ω/2)
e−jω( L−1

2 )
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DTFT of Rectangular Window

The local summing filter is just a scaled version of the local
averaging filter. It is commonly called the “rectangular window,”
for reasons that we’ll explore in future lectures.

Centered rectangular window:

wc [n] =

{
1 −

(
L−1
2

)
≤ n ≤

(
L−1
2

)
0 otherwise

Wc(ω) =
sin(ωL/2)

sin(ω/2)

Causal rectangular window:

wd [n] =

{
1 0 ≤ n ≤ L− 1

0 otherwise
Wd(ω) =

sin(ωL/2)

sin(ω/2)
e−jω( L−1

2 )
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Dirichlet form

Of all four of these signals, the centered rectangular window has
the simplest DTFT. The textbook calls this signal the “Dirichlet
form:”

DL(ω) =
sin(ωL/2)

sin(ω/2)

That is, exactly, the frequency response of a centered rectangular
window:

dL[n] = wc [n] =

{
1 −

(
L−1
2

)
≤ n ≤

(
L−1
2

)
0 otherwise
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Dirichlet form

Here’s what it looks like:
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Dirichlet form

Since every local averaging filter is based on Dirichlet form, it’s
worth spending some time to understand it better.

DL(ω) =
sin(ωL/2)

sin(ω/2)

It’s equal to zero every time ωL/2 is a multiple of π. So

DL

(
2πk

L

)
= 0 for all integers k except k = 0

At ω = 0, the value of sin(ωL/2)
sin(ω/2) is undefined, but it’s posssible

to prove that limω→0DL(ω) = L. To make life easy, we’ll just
define it that way:

DEFINE: DL(0) = L
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Dirichlet form

Here’s what it looks like:
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Local averaging filter

Here’s what the centered local averaging filter looks like. Notice
that it’s just 1/L times the Dirichlet form:
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Summary: DTFTs of Rectangular Windows

The Centered Local Averaging Filter is 1/L times the
Dirichlet form:

fc [n] =

{
1
L −

(
L−1
2

)
≤ n ≤

(
L−1
2

)
0 otherwise

↔ Fc(ω) =
sin(ωL/2)

L sin(ω/2)

The Causal Local Averaging Filter is fc [n], delayed by L−1
2

samples:

fd [n] =

{
1
L 0 ≤ n ≤ L− 1

0 otherwise
↔ Fd(ω) =

sin(ωL/2)

L sin(ω/2)
e−jω( L−1

2 )
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