Review	DTFT	DTFT Properties	Examples	Summary

Lecture 16: Discrete-Time Fourier Transform (DTFT)

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Review	DTFT	DTFT Properties	Examples	Summary

- 2 Discrete Time Fourier Transform
- Properties of the DTFT

Review	DTFT	DTFT Properties	Examples	Summary
000	00000000	0000000	000000000	000
Outline				

- 2 Discrete Time Fourier Transform
- Operation of the DTFT

 Review
 DTFT
 DTFT Properties
 Examples
 Summary

 000
 00000000
 00000000
 000

Response of LSI System to Periodic Inputs

Suppose we compute y[n] = x[n] * h[n], where

$$x[n] = rac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi kn/N}, ext{ and }$$

 $y[n] = rac{1}{N} \sum_{k=0}^{N-1} Y[k] e^{j2\pi kn/N}.$

The relationship between Y[k] and X[k] is given by the frequency response:

$$Y[k] = H(k\omega_0)X[k]$$

where

$$H(\omega) = \sum_{n=-\infty}^{\infty} h[n] e^{-j\omega n}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Review
 DTFT
 DTFT Properties
 Examples
 Summary

 000
 00000000
 00000000
 000
 000

Response of LSI System to Aperiodic Inputs

But what about signals that never repeat themselves? Can we still write something like

$$Y(\omega) = H(\omega)X(\omega)?$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Review	DTFT	DTFT Properties	Examples	Summary
	00000000			
Outline				

2 Discrete Time Fourier Transform

Properties of the DTFT

4 Examples

Review	DTFT	DTFT Properties	Examples	Summary
000	00000000		000000000	000
Aperiodic				

- An "aperiodic signal" is a signal that is not periodic.
 - Music: strings, woodwinds, and brass are periodic, drums and rain sticks are aperiodic.
 - Speech: vowels and nasals are periodic, plosives and fricatives are aperiodic.
 - Images: stripes are periodic, clouds are aperiodic.
 - Bioelectricity: heartbeat is periodic, muscle contractions are aperiodic.

Review	DTFT	DTFT Properties	Examples	Summary
000	00000000		000000000	000
Periodic				

The spectrum of a periodic signal is given by its Fourier series. In discrete time, that's:

$$X_{k} = \frac{1}{N_{0}} \sum_{n=-\frac{N_{0}}{2}}^{\frac{N_{0}-1}{2}} x[n] e^{-j\frac{2\pi kn}{N_{0}}}$$
$$= \frac{1}{N_{0}} \sum_{n=-\frac{N_{0}}{2}}^{\frac{N_{0}-1}{2}} x[n] e^{-j\omega n}$$

and that gives the frequency content of the signal, at the frequency $\omega = \frac{2\pi k}{N_0}$. Here I'm using $n \in \left\{-\frac{N_0}{2}, \dots, \frac{N_0-1}{2}\right\}$, but the sum could be over any sequence of N_0 continuous samples.

Review	DTFT	DTFT Properties	Examples	Summary
000	00000000	0000000	0000000000	000
Aperiodic				

An aperiodic signal is one that **never** repeats itself. So we want something like the limit, as $N_0 \rightarrow \infty$, of the Fourier series. Here is the simplest such thing that is useful:

Discrete-Time Fourier Transform (DTFT)

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

Review DTFT DTFT Properties Examples 000000000

Fourier Series vs. Fourier Transform

The Fourier Series coefficients are:

$$X_{k} = \frac{1}{N_{0}} \sum_{n=-\frac{N_{0}}{2}}^{\frac{N_{0}-1}{2}} x[n] e^{-j\omega n}$$

The Fourier transform is:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

Notice that, besides taking the limit as $N_0 \rightarrow \infty$, we also got rid of the $\frac{1}{N_0}$ factor. So we can think of the DTFT as

$$X(\omega) = \lim_{N_0 o \infty, \omega = rac{2\pi k}{N_0}} N_0 X_k$$

where the limit is: as $N_0 \to \infty$, and $k \to \infty$, but $\omega = \frac{2\pi k}{N_0}$ remains constant. ▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Review	DTFT	DTFT Properties	Examples	Summary
000	○00000000	0000000	000000000	000
Inverse D	FFT			

In order to convert $X(\omega)$ back to x[n], we'll take advantage of orthogonality:

$$\int_{-\pi}^{\pi} e^{j\omega(m-n)} d\omega = egin{cases} 2\pi & m=n \ 0 & (m-n) = ext{any nonzero integer} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Review	DTFT	DTFT Properties	Examples	Summary
000	○000000000	0000000	000000000	000
Inverse D	ΓFT			

Taking advantage of orthogonality, we can see that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega m} d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \right) e^{j\omega m} d\omega$$
$$= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} x[n] \int_{-\pi}^{\pi} e^{j\omega(m-n)} d\omega$$
$$= x[m]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 Review
 DTFT coperties
 Examples coperation
 Summary coperation

 Fourier Series and Fourier Transform
 Fourier Series
 Fourier Series
 Fourier Series

Discrete-Time Fourier Series (DTFS):

$$X_{k} = \frac{1}{N_{0}} \sum_{n=0}^{N_{0}-1} x[n] e^{-j\frac{2\pi kn}{N_{0}}}$$
$$x[n] = \sum_{k=0}^{N_{0}-1} X_{k} e^{j\frac{2\pi kn}{N_{0}}}$$

Discrete-Time Fourier Transform (DTFT):

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n} d\omega$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Review	DTFT	DTFT Properties	Examples	Summary
000	00000000	0000000	000000000	000
Quiz				

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Go to the course webpage, try the quiz!

Review	DTFT	DTFT Properties	Examples	Summary
000	00000000	●○○○○○○	000000000	000
Outline				

- Review: Frequency Response
- 2 Discrete Time Fourier Transform
- Operation of the DTFT
- 4 Examples

In order to better understand the DTFT, let's discuss these properties:

- Periodicity
- Linearity
- 2 Time Shift
- Frequency Shift
- Iltering is Convolution

Property #4 is actually the reason why we invented the DTFT in the first place. Before we discuss it, though, let's talk about the others.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Review
 DTFT
 DTFT Properties
 Examples
 Summary

 000
 00000000
 00000000
 000

0. Periodicity

The DTFT is periodic with a period of 2π . That's just because $e^{j2\pi} = 1$:

$$X(\omega) = \sum_{n} x[n]e^{-j\omega n}$$
$$X(\omega + 2\pi) = \sum_{n} x[n]e^{-j(\omega + 2\pi)n} = \sum_{n} x[n]e^{-j\omega n} = X(\omega)$$
$$X(\omega - 2\pi) = \sum_{n} x[n]e^{-j(\omega - 2\pi)n} = \sum_{n} x[n]e^{-j\omega n} = X(\omega)$$

For example, the inverse DTFT can be defined in two different ways:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{0}^{2\pi} X(\omega) e^{j\omega n} d\omega$$

Those two integrals are equal because $X(\omega + 2\pi) = X(\omega)$.

Review	DTFT	DTFT Properties	Examples	Summary
000	000000000		000000000	000
1. Lineari	tv			

The DTFT is linear:

$$z[n] = ax[n] + by[n] \quad \leftrightarrow \quad Z(\omega) = aX(\omega) + bY(\omega)$$

Proof:

$$Z(\omega) = \sum_{n} z[n]e^{-j\omega n}$$

= $a \sum_{n} x[n]e^{-j\omega n} + b \sum_{n} y[n]e^{-j\omega n}$
= $aX(\omega) + bY(\omega)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Shifting in time is the same as multiplying by a complex exponential in frequency:

$$z[n] = x[n - n_0] \quad \leftrightarrow \quad Z(\omega) = e^{-j\omega n_0}X(\omega)$$

Proof:

$$Z(\omega) = \sum_{n=-\infty}^{\infty} x[n - n_0] e^{-j\omega n}$$
$$= \sum_{m=-\infty}^{\infty} x[m] e^{-j\omega(m+n_0)} \quad \text{(where } m = n - n_0\text{)}$$
$$= e^{-j\omega n_0} X(\omega)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Shifting in frequency is the same as multiplying by a complex exponential in time:

$$z[n] = x[n]e^{j\omega_0 n} \quad \leftrightarrow \quad Z(\omega) = X(\omega - \omega_0)$$

Proof:

$$Z(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{j\omega_0 n} e^{-j\omega n}$$
$$= \sum_{n=-\infty}^{\infty} x[n] e^{-j(\omega-\omega_0)n}$$
$$= X(\omega-\omega_0)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

4. Convolution Property

Convolving in time is the same as multiplying in frequency:

$$y[n] = h[n] * x[n] \quad \leftrightarrow Y(\omega) = H(\omega)X(\omega)$$

Proof: Remember that y[n] = h[n] * x[n] means that $y[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$. Therefore,

$$Y(\omega) = \sum_{n=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} h[m]x[n-m] \right) e^{-j\omega n}$$

= $\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} (h[m]x[n-m]) e^{-j\omega m} e^{-j\omega(n-m)}$
= $\left(\sum_{m=-\infty}^{\infty} h[m]e^{-j\omega m} \right) \left(\sum_{(n-m)=-\infty}^{\infty} x[n-m]e^{-j\omega(n-m)} \right)$
= $H(\omega)X(\omega)$

Review	DTFT	DTFT Properties	Examples	Summary
000	000000000		●○○○○○○○○	000
Outline				

- 1 Review: Frequency Response
- 2 Discrete Time Fourier Transform
- Operation of the DTFT

 Review
 DTFT
 DTFT Properties
 Examples
 Summary

 000
 00000000
 00000000
 000
 000

Impulse and Delayed Impulse

For our examples today, let's consider different combinations of these three signals:

$$f[n] = \delta[n]$$
$$g[n] = \delta[n-3]$$
$$h[n] = \delta[n-6]$$

Remember from last time what these mean:

$$f[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
$$g[n] = \begin{cases} 1 & n = 3 \\ 0 & \text{otherwise} \end{cases}$$
$$h[n] = \begin{cases} 1 & n = 6 \\ 0 & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Review	DTFT	DTFT Properties	Examples	Summary
000	000000000		○0●0000000	000
DTFT of an Impulse				

First, let's find the DTFT of an impulse:

$$f[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
$$F(\omega) = \sum_{n = -\infty}^{\infty} f[n]e^{-j\omega n}$$
$$= 1 \times e^{-j\omega 0}$$
$$= 1$$

So we get that $f[n] = \delta[n] \leftrightarrow F(\omega) = 1$. That seems like it might be important.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Review
 DTFT
 DTFT Properties
 Examples
 Summary

 000
 00000000
 0000000
 000
 000

DTFT of a Delayed Impulse

Second, let's find the DTFT of a delayed impulse:

$$g[n] = \begin{cases} 1 & n = 3 \\ 0 & \text{otherwise} \end{cases}$$
$$G(\omega) = \sum_{n = -\infty}^{\infty} g[n] e^{-j\omega n}$$
$$= 1 \times e^{-j\omega 3}$$

So we get that

$$g[n] = \delta[n-3] \leftrightarrow G(\omega) = e^{-j3\omega}$$

Similarly, we could show that

$$h[n] = \delta[n-6] \leftrightarrow H(\omega) = e^{-j6\omega}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Review
 DTFT
 DTFT Properties
 Examples
 Su

 000
 000000000
 00000000
 00000000
 000

Impulse and Delayed Impulse

So our signals are:

$$f[n] = \delta[n] \leftrightarrow F(\omega) = 1$$
$$g[n] = \delta[n-3] \leftrightarrow G(\omega) = e^{-3j\omega}$$
$$h[n] = \delta[n-6] \leftrightarrow H(\omega) = e^{-6j\omega}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Review	DTFT	DTFT Properties	Examples	Summary	
000	000000000	0000000	000000000	000	
Time Shift Property					

Notice that

$$g[n] = f[n-3]$$
$$h[n] = g[n-3].$$

From the time-shift property of the DTFT, we can get that

$$G(\omega) = e^{-j3\omega}F(\omega)$$

 $H(\omega) = e^{-j3\omega}G(\omega).$

Plugging in $F(\omega) = 1$, we get

$$G(\omega) = e^{-j3\omega}$$

 $H(\omega) = e^{-j6\omega},$

which we already know to be the right answer!

 Review
 DTFT
 DTFT Properties
 Examples
 Summary

 000
 00000000
 00000000
 000
 000

Convolution Property and the Impulse

Notice that, if $F(\omega) = 1$, then anything times $F(\omega)$ gives itself again. In particular,

 $G(\omega) = G(\omega)F(\omega)$ $H(\omega) = H(\omega)F(\omega)$

Since multiplication in frequency is the same as convolution in time, that must mean that when you convolve any signal with an impulse, you get the same signal back again:

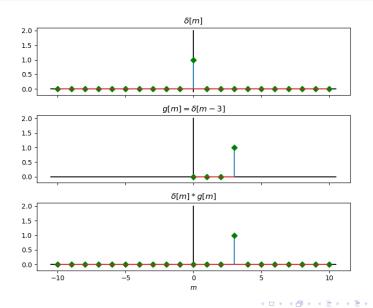
 $g[n] = g[n] * \delta[n]$ $h[n] = h[n] * \delta[n]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Review
 DTFT
 DTFT Properties
 Examples
 Summary

 000
 00000000
 000000000
 000

Convolution Property and the Impulse



€ 990

Convolution Property and the Delayed Impulse

Here's another interesting thing. Notice that $G(\omega) = e^{-j3\omega}$, but $H(\omega) = e^{-j6\omega}$. So

$$H(\omega) = e^{-j3\omega}e^{-j3\omega}$$
$$= G(\omega)G(\omega)$$

Does that mean that:

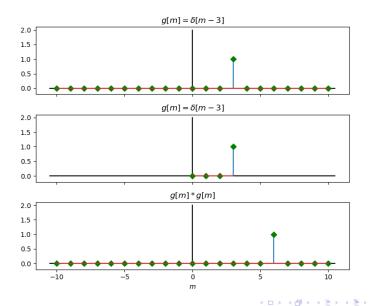
$$\delta[n-6] = \delta[n-3] * \delta[n-3]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Review
 DTFT
 DTFT Properties
 Examples
 Summary

 000
 00000000
 00000000
 000
 000

Convolution Property and the Delayed Impulse



Review	DTFT	DTFT Properties	Examples	Summary
				000
Outline				
(JIITIINA				

- 1 Review: Frequency Response
- 2 Discrete Time Fourier Transform
- Operation of the DTFT
- 4 Examples

Review	DTFT	DTFT Properties	Examples	Summary
000	000000000	0000000	000000000	○●○
Summary				

The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n} d\omega$$

Particular useful examples include:

$$f[n] = \delta[n] \leftrightarrow F(\omega) = 1$$
$$g[n] = \delta[n - n_0] \leftrightarrow G(\omega) = e^{-j\omega n_0}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Properties worth knowing include:

- Periodicity: $X(\omega + 2\pi) = X(\omega)$
- Linearity:

$$z[n] = ax[n] + by[n] \leftrightarrow Z(\omega) = aX(\omega) + bY(\omega)$$

- 2 Time Shift: $x[n n_0] \leftrightarrow e^{-j\omega n_0} X(\omega)$
- Solution Frequency Shift: $e^{j\omega_0 n} x[n] \leftrightarrow X(\omega \omega_0)$
- Iltering is Convolution:

$$y[n] = h[n] * x[n] \leftrightarrow Y(\omega) = H(\omega)X(\omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで