Systems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lecture 11: Linearity and Shift-Invariance

Mark Hasegawa-Johnson These slides are in the public domain.

ECE 401: Signal and Image Analysis

Systems	Linearity	Shift Invariance	Summary

Systems	Linearity	Shift Invariance	Summary
●○○○○○○	0000000	0000000	00
Outline			

2 Linearity

3 Shift Invariance

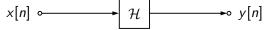
| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | □ ● ○ ○ ○ ○

Systems	Linearity	Shift Invariance	Summary
○●00000	0000000	0000000	00
What is a Syste	m?		

A **system** is anything that takes one signal as input, and generates another signal as output. We can write

$$x[n] \xrightarrow{\mathcal{H}} y[n]$$

which means



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Systems	Linearity	Shift Invariance	Summary
○o●oooo	0000000	0000000	00
Example: Ave	erager		

For example, a weighted local averager is a system. Let's call it system $\ensuremath{\mathcal{A}}.$

$$x[n] \xrightarrow{\mathcal{A}} y[n] = \sum_{m=0}^{6} g[m]x[n-m]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Systems	Linearity	Shift Invariance	Summary
○○○●○○○	0000000	0000000	00
Example: 1	-ime_Shift		

A time-shift is a system. Let's call it system $\mathcal{T}.$

$$x[n] \xrightarrow{\mathcal{T}} y[n] = x[n-1]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Systems	Linearity	Shift Invariance	Summary
○○○○●○○	0000000	0000000	00
Example: Squar	re		

If you calculate the square of a signal, that's also a system. Let's call it system $\mathcal{S}\colon$

$$x[n] \xrightarrow{\mathcal{S}} y[n] = x^2[n]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Systems	Linearity	Shift Invariance	Summary
○0000●0	0000000	0000000	00
Example: Add a	Constant		

If you add a constant to a signal, that's also a system. Let's call it system \mathcal{C} :

$$x[n] \xrightarrow{\mathcal{C}} y[n] = x[n] + 1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

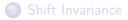
Example:	Window		
Systems	Linearity	Shift Invariance	Summary
○00000●	0000000		00

If you chop off all elements of a signal that are before time 0 or after time N - 1 (for example, because you want to put it into an image), that is a system:

$$x[n] \xrightarrow{\mathcal{W}} y[n] = \begin{cases} x[n] & 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases}$$

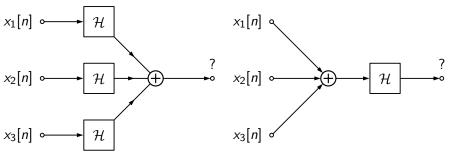
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Systems	Linearity	Shift Invariance	Summary
0000000	●○○○○○○	0000000	00
Outline			



Systems	Linearity	Shift Invariance	Summary
0000000	○●00000	0000000	00
Linearity			

A system is **linear** if these two algorithms compute the same thing:



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Systems	Linearity	Shift Invariance	Summary
0000000	⊙o●oooo	0000000	00
Linearity			

A system \mathcal{H} is said to be **linear** if and only if, for any $x_1[n]$ and $x_2[n]$,

$$x_1[n] \xrightarrow{\mathcal{H}} y_1[n]$$
$$x_2[n] \xrightarrow{\mathcal{H}} y_2[n]$$

implies that

$$x[n] = x_1[n] + x_2[n] \xrightarrow{\mathcal{H}} y[n] = y_1[n] + y_2[n]$$

In words: a system is **linear** if and only if, for every pair of inputs $x_1[n]$ and $x_2[n]$, (1) adding the inputs and then passing them through the system gives exactly the same effect as (2) passing both inputs through the system, and **then** adding them.

Notice, a special case of linearity is the case when $x_1[n] = x_2[n]$:

$$x_1[n] \xrightarrow{\mathcal{H}} y_1[n]$$
$$x_1[n] \xrightarrow{\mathcal{H}} y_1[n]$$

implies that

$$x[n] = 2x_1[n] \xrightarrow{\mathcal{H}} y[n] = 2y_1[n]$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

So if a system is linear, then scaling the input also scales the output.

Example: A			00
Systems	Linearity	Shift Invariance	Summary

Let's try it with the weighted averager.

$$x_1[n] \xrightarrow{\mathcal{A}} y_1[n] = \sum_{m=0}^6 g[m] x_1[n-m]$$
$$x_2[n] \xrightarrow{\mathcal{A}} y_2[n] = \sum_{m=0}^6 g[m] x_2[n-m]$$

Then:

$$\begin{aligned} x[n] &= x_1[n] + x_2[n] = \sum_{m=0}^{6} g[m] \left(x_1[n-m] + x_2[n-m] \right) \\ &= \left(\sum_{m=0}^{6} g[m] x_1[n-m] \right) + \left(\sum_{m=0}^{6} g[m] x_2[n-m] \right) \\ &= y_1[n] + y_2[n] \end{aligned}$$

Systems	Linearity	Shift Invariance	Summary
0000000	○○○○○●○	0000000	00
Example:	Square		

A squarer is just obviously nonlinear, right? Let's see if that's true:

$$\begin{aligned} x_1[n] & \stackrel{\mathcal{S}}{\longrightarrow} y_1[n] = x_1^2[n] \\ x_2[n] & \stackrel{\mathcal{S}}{\longrightarrow} y_2[n] = x_2^2[n] \end{aligned}$$

Then:

$$\begin{aligned} x[n] &= x_1[n] + x_2[n] \xrightarrow{\mathcal{A}} y[n] = x^2[n] \\ &= (x_1[n] + x_2[n])^2 \\ &= x_1^2[n] + 2x_1[n]x_2[n] + x_2^2[n] \\ &\neq y_1[n] + y_2[n] \end{aligned}$$

... so a squarer is a **nonlinear system**.

	dd a Constant		
Systems	Linearity	Shift Invariance	Summary
0000000	○○○○○●		00

This one is tricky. Adding a constant seems like it ought to be linear, but it's actually **nonlinear**. Adding a constant is what's called an **affine** system, which is not necessarily linear.

$$x_1[n] \xrightarrow{\mathcal{C}} y_1[n] = x_1[n] + 1$$
$$x_2[n] \xrightarrow{\mathcal{C}} y_2[n] = x_2[n] + 1$$

Then:

$$\begin{aligned} x[n] &= x_1[n] + x_2[n] \xrightarrow{\mathcal{A}} y[n] = x[n] + 1 \\ &= x_1[n] + x_2[n] + 1 \\ &\neq y_1[n] + y_2[n] \end{aligned}$$

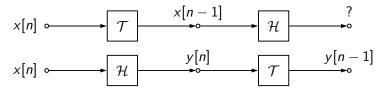
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

... so adding a constant is a **nonlinear system**.

Systems	Linearity	Shift Invariance	Summary
0000000	0000000		00
Outline			

	000000	000000	00
Shift Invarian			

A system \mathcal{H} is **shift-invariant** if these two algorithms compute the same thing (here \mathcal{T} means "time shift"):



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Systems	Linearity	Shift Invariance	Summary
0000000	0000000	○○●○○○○	00
Shift Invariance	e		

A system \mathcal{H} is said to be **shift-invariant** if and only if, for every $x_1[n]$,

$$x_1[n] \xrightarrow{\mathcal{H}} y_1[n]$$

implies that

$$x[n] = x_1[n - n_0] \xrightarrow{\mathcal{H}} y[n] = y_1[n - n_0]$$

In words: a system is **shift-invariant** if and only if, for any input $x_1[n]$, (1) shifting the input by some number of samples n_0 , and then passing it through the system, gives exactly the same result as (2) passing it through the system, and then shifting it.

Systems	Linearity	Shift Invariance	Summary
0000000	0000000	○00●000	00
Example: A	Averager		

Let's try it with the weighted averager.

$$x_1[n] \xrightarrow{\mathcal{A}} y_1[n] = \sum_{m=0}^6 g[m] x_1[n-m]$$

Then:

$$x[n] = x_1[n - n_0] \xrightarrow{\mathcal{A}} y[n] = \sum_{m=0}^{6} g[m]x[n - m]$$
$$= \sum_{m=0}^{6} g[m]x_1[(n - m) - n_0]$$
$$= \sum_{m=0}^{6} g[m]x_1[(n - n_0) - m]$$
$$= y_1[n - n_0]$$

Example:	Square		
Systems	Linearity	Shift Invariance	Summary
0000000	0000000		00

Squaring the input is a nonlinear operation, but is it shift-invariant? Let's find out:

$$x_1[n] \xrightarrow{\mathcal{S}} y_1[n] = x_1^2[n]$$

Then:

$$x[n] = x_1[n - n_0] \xrightarrow{\mathcal{A}} y[n] = x^2[n]$$
$$= (x_1[n - n_0])^2$$
$$= x_1^2[n - n_0]$$
$$= y_1[n - n_0]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

... so computing the square is a **shift-invariant system**.

Example:	Windowing		
Systems	Linearity	Shift Invariance	Summary
0000000	0000000	○○○○○●○	00

How about windowing, e.g., in order to create an image?

$$x_1[n] \xrightarrow{\mathcal{W}} y_1[n] = egin{cases} x_1[n] & 0 \le n \le N-1 \\ 0 & ext{otherwise} \end{cases}$$

If we shift the **output**, we get

$$y_1[n - n_0] = \begin{cases} x_1[n - n_0] & n_0 \le n \le N - 1 + n_0 \\ 0 & \text{otherwise} \end{cases}$$

... but if we shift the **input** $(x[n] = x_1[n - n_0])$, we get

$$y[n] = \begin{cases} x[n] & 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases} = \begin{cases} x_1[n-n_0] & 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases}$$
$$\neq y_1[n-n_0]$$

... so windowing is a shift-varying system (not shift-invariant).

Systems	Linearity	Shift Invariance	Summary
0000000	0000000	○00000●	00
Quiz			

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Go to the course web page, try the quiz!

Systems	Linearity	Shift Invariance	Summary
0000000	0000000	0000000	●○
Outline			

Systems	Linearity	Shift Invariance	Summary
0000000	0000000	0000000	○●
Summary			

• A system is **linear** if and only if, for any two inputs $x_1[n]$ and $x_2[n]$ that produce outputs $y_1[n]$ and $y_2[n]$,

$$x[n] = x_1[n] + x_2[n] \xrightarrow{\mathcal{H}} y[n] = y_1[n] + y_2[n]$$

 A system is shift-invariant if and only if, for any input x₁[n] that produces output y₁[n],

$$x[n] = x_1[n - n_0] \xrightarrow{\mathcal{H}} y[n] = y_1[n - n_0]$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ