Lecture 10: Convolution
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How do you treat an image as a signal?

Here is the original image!
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How do you treat an image as a signal?

@ An RGB image is a signal in three dimensions: f[i,j, k] =
intensity of the signal in the i*" row, j* column, and k*" color.

e f[i,j, k], for each (i,j, k), is either stored as an integer or a
floating point number:
o Floating point: usually x € [0,1], so x = 0 means dark, x =1
means bright.
o Integer: usually x € {0,...,255}, so x = 0 means dark,
x = 255 means bright.

@ The three color planes are usually:
o k=0: Red
o k=1: Blue
e k=2: Green
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Local averaging

Image with both rows and columns smoothed
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Local averaging

@ “Local averaging” means that we create an output image,

yli,j, k], each of whose pixels is an average of nearby pixels
in f[i, ], k.

o For example, if we average along the rows:

1 Jt+M
vliisK =557 22 flid K]
j’=i-M

@ If we average along the columns:

1 i+M

vligK =557 2. flihGA
i"=i—M
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Local averaging of a unit step

The top row are the averaging weights. If it's a 7-sample local
average, (2M + 1) =7, so the averaging weights are each
ﬁ“ = 1. The middle row shows the input, f[n]. The bottom

row shows the output, y[n].

Rectangular smoothing filter
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Weighted local averaging

@ Suppose we don't want the edges quite so abrupt. We could
do that using “weighted local averaging:”" each pixel of
yli,Jj, k] is a weighted average of nearby pixels in [/, J, k],
with some averaging weights g[n].

@ For example, if we average along the rows:

j+M
ylii, k=Y gli— mlfli,m, k]
m=j—M

o If we average along the columns:

i+M
ylig: K= gli—mlf[m,j, k]
i"=i—M
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Weighted local averaging of a unit step

The top row are the averaging weights, g[n]. The middle row
shows the input, f[n]. The bottom row shows the output, y[n].

Gaussian smoothing filter
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Convolution

@ A convolution is exactly the same thing as a weighted local
average. We give it a special name, because we will use it
very often. It's defined as:

ylnl =) glmlfln—m] =) gln— m]f[m]

@ We use the symbol * to mean “convolution:”

ylnl = glnl * fln] = _ glmlf[n—m] = g[n— m]f[m]
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Convolution

ylnl = gln]« fn] = >, g[mlf[n — m] = 5_, g[n — m]f[m]

Here is the pseudocode for convolution:

© For every output n:
©® Reverse g[m] in time, to create g[—m].

@ Shift it to the right by n samples, to create g[n — m].
© For every m:

@ Multiply f[m]g[n — m].
@ Add them up to create y[n] =) g[n — m]f[m] for this
particular n.
@ Concatenate those samples together, in sequence, to make the

signal y.
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Convolution: how should you implement it?

@ When writing code: use the numpy function, np.convolve.
In general, if numpy has a function that solves your problem,
you are always permitted to use it.

@ When solving problems with pencil and paper: use graphical
convolution.
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Graphical Convolution

@ Choose one of the two functions whose breakpoints are easier
to shift (i.e., it breaks at easy values like n = 0), and call that
f[n]. Call the other function g[n].

@ Plot g[m] as a function of m.

@ Underneath, plot f[n — m] as a function of m for some
particular n.

© Under that, plot g[m]f[n — m] for the same particular n.

© Use your plot as a guide to help you write the equation
> - m&lm]f[n — m] in a solvable form. Solve it to find y[n].

@ |If this gives you enough information to find y[n] for every
other n, then do so. If there's some other n that's not yet
obvious to you, then repeat above process for the other n.
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Graphical Convolution: A Video from Wikipedia
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by Brian Amberg, CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif


https://commons.wikimedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif
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Do the quiz! Go to the course webpage, and try the quiz.
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Differencing is convolution, too

Suppose we want to compute the local difference:
yln] = fln] = f[n —1]
We can do that using a convolution!

yln} = fln — m]h[m]

where
1 m=20

hm=4¢-1 m=1

0 otherwise



Differencing
oce

Forward-Difference filter
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Weighted differencing as convolution

@ The formula y[n] = f[n] — f[n — 1] is kind of noisy. Any noise
in f[n] or f[n — 1] means noise in the output.
@ We can make it less noisy by
@ First, compute a weighted average:

ylnl = flmlg[n — m]
@ Then, compute a local difference:
z[n] = yln] = yln = 1] =) fIm] (g[n — m] — g[n—1 — m])
This is exactly the same thing as convolving with

hin] = gln] — g[n —1]
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A difference-of-Gaussians filter

The top row is a “difference of Gaussians” filter,
h[n] = g[n] — g[n — 1], where g[n] is a Gaussian. The middle row
is f[n], the last row is the output z[n].

Difference-of-Gaussians filter
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Difference-of-Gaussians filtering in both rows and columns

Horizontal grad magnitude Vertical grad magnitude
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Image gradient

@ Suppose we have an image f[i,j, k]. The 2D image gradient
is defined to be

2. df \ »  (df\
G[Iu./’ k] = <dl> ! (d_j)J

where 7 is a unit vector in the i direction, J is a unit vector in
the j direction.

@ We can approximate these using the difference-of-Gaussians
filter, hgog[n):

df . ..
o ~ Gj = hgog[i] * f[i,J, k]

df . ..
Fj ~ G_] = hdog[]]>l< f[I7J7k]



The gradient is a vector

The image gradient, at any given pixel, is a vector. It points in the
direction of increasing intensity (this image shows “dark” =
greater intensity).

By CWeiske, CC-SA 2.5, https://commons.wikimedia.org/wiki/File:Gradient2.svg


https://commons.wikimedia.org/wiki/File:Gradient2.svg

Magnitude of the image gradient

@ The image gradient, at any given pixel, is a vector.
@ It points in the direction in which intensity is increasing.

@ The magnitude of the vector tells you how fast intensity is

changing.
1G] = /67 + 67
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Magnitude of the gradient = edge detector

Gradient magnitude
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Summary

yln] = gln]  fln) = ) _ glm]f[n—m] = _gln— m]f[m]
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