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How to sample a continuous-time signal

Suppose you have some continuous-time signal, x(t), and you’d
like to sample it, in order to store the sample values in a computer.
The samples are collected once every Ts = 1

Fs
seconds:

x [n] = x(t = nTs)
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Aliasing

A sampled sinusoid can be reconstructed perfectly if the
Nyquist criterion is met, f < Fs

2 .

If the Nyquist criterion is violated, then:

If Fs

2 < f < Fs , then it will be aliased to

fa = Fs − f

za = z∗

i.e., the sign of all sines will be reversed.
If Fs < f < 3Fs

2 , then it will be aliased to

fa = f − Fs

za = z
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Spectrum Plots

The spectrum plot of a periodic signal is a plot with

frequency on the X-axis,

showing a vertical spike at each frequency component,

each of which is labeled with the corresponding phasor.
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Example: Sine Wave

x(t) = sin (2π800t)

=
1

2j
e j2π800t − 1

2j
e−j2π800t

The spectrum of x(t) is {(−800,− 1
2j ), (800, 1

2j )}.



Sampling Spectrum Plots Oversampled Undersampled Sampling Theorem DTFS Summary

Example: Sine Wave
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Example: Quadrature Cosine

x(t) = 3 cos
(

2π800t +
π

4

)
=

3

2
e jπ/4e j2π800t +

3

2
e−jπ/4e−j2π800t

The spectrum of x(t) is {(−800, 32e
−jπ/4), (800, 32e

jπ/4)}.
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Example: Quadrature Cosine



Sampling Spectrum Plots Oversampled Undersampled Sampling Theorem DTFS Summary

Outline

1 Review: Sampling and Interpolation

2 Spectrum Plots

3 Spectrum of Oversampled Signals

4 Spectrum of Undersampled Signals

5 The Sampling Theorem

6 Discrete-Time Fourier Series

7 Summary



Sampling Spectrum Plots Oversampled Undersampled Sampling Theorem DTFS Summary

Oversampled Signals

A signal is called oversampled if Fs > 2f (e.g., so that sinc
interpolation can reconstruct it from its samples).
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Spectrum Plot of a Discrete-Time Periodic Signal

The spectrum plot of a discrete-time periodic signal is a regular
spectrum plot, but with the X-axis relabeled. Instead of frequency

in Hertz=
[

cycles
second

]
, we use

ω

[
radians

sample

]
=

2π
[

radians
cycle

]
f
[

cycles
second

]
Fs
[

samples
second

]
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How do we plot the aliasing?

Remember that a discrete-time signal has energy at

f and −f , but also Fs − f and −Fs + f , and Fs + f and
−Fs − f , and. . .

ω and −ω, but also 2π − ω and −2π + ω, and 2π + ω and
−2π − ω, and. . .

Which ones should we plot? Answer: plot all of them! Usually
we plot a few nearest the center, then add “. . . ” at either end, to
show that the plot continues forever.
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Example: Sine Wave

Let’s sample at Fs = 8000 samples/second.

x [n] = sin (2π800n/8000)

= sin (πn/5)

=
1

2j
e jπn/5 − 1

2j
e−jπn/5

The spectrum of x [n] is {. . . , (−π/5,− 1
2j ), (π/5, 1

2j ), . . .}.
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Example: Sine Wave
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Example: Quadrature Cosine

x [n] = 3 cos
(

2π800n/8000 +
π

4

)
= 3 cos

(
πn/5 +

π

4

)
=

3

2
e jπ/4e jπn/5 +

3

2
e−jπ/4e−jπn/5

The spectrum of x [n] is {. . . , (−π/5, 32e
−jπ/4), (π/5, 32e

jπ/4), . . .}.
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Example: Quadrature Cosine
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Undersampled Signals

A signal is called undersampled if Fs < 2f (e.g., so that sinc
interpolation can’t reconstruct it from its samples).
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. . . but Aliasing?

Remember that a discrete-time signal has energy at

f and −f , but also Fs − f and −Fs + f , and Fs + f and
−Fs − f , and. . .

ω and −ω, but also 2π − ω and −2π + ω, and 2π + ω and
−2π − ω, and. . .

We still want to plot all of these, but now ω and −ω won’t be the
spikes closest to the center. Instead, some other spike will be
closest to the center.
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Example: Sine Wave

Let’s still sample at Fs = 8000, but we’ll use a sine wave at
f = 4800Hz, so it gets undersampled.

x [n] = sin (2π4800n/8000)

= sin (6πn/5)

= − sin (4πn/5)

= − 1

2j
e j4πn/5 +

1

2j
e j4πn/5

The spectrum of x [n] is {. . . , (−4π/5, 1
2j ), (4π/5,− 1

2j ), . . .}.
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Example: Sine Wave
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Example: Quadrature Cosine

x [n] = 3 cos
(

2π4800n/8000 +
π

4

)
= 3 cos

(
6πn/5 +

π

4

)
= 3 cos

(
4πn/5− π

4

)
=

3

2
e−jπ/4e j4πn/5 +

3

2
e jπ/4e−j4πn/5

The spectrum of x [n] is
{. . . , (−4π/5, 32e

jπ/4), (4π/5, 32e
−jπ/4), . . .}.
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Example: Quadrature Cosine
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Quiz

Go to the course web page, and try the quiz!
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General periodic continuous-time signals

Let’s assume that x(t) is periodic with some period T0, therefore
it has a Fourier series:

x(t) =
∞∑

k=−∞
Xke

j2πkt/T0 =
∞∑
k=0

2|Xk | cos

(
2πkt

T0
+ ∠Xk

)
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Eliminate the aliased tones

We already know that e j2πkt/T0 will be aliased if |k |/T0 > FN . So
let’s assume that the signal is band-limited: it contains no
frequency components with frequencies larger than FS/2.
That means that the only Xk with nonzero energy are the ones in
the range −N−1

2 ≤ k ≤ N−1
2 , where N−1

2T0
< Fs

2 :

x(t) =

(N−1)/2∑
k=−(N−1)/2

Xke
j2πkt/T0

Notice that, counting the k = 0 term, there are an odd number of
harmonics (N is odd), in the range −N−1

2 ≤ k ≤ N−1
2 .
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Sample that signal!

Now let’s sample that signal, at sampling frequency FS :

x [n] =

(N−1)/2∑
k=−(N−1)/2

Xke
j2πkn/FST0

=

(N−1)/2∑
k=−(N−1)/2

Xke
jkω0n,

where the discrete-time fundamental frequency, expressed in
radians/sample, is

ω0 =
2πF0
Fs

=
2π

FsT0
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Spectrum of a sampled periodic signal



Sampling Spectrum Plots Oversampled Undersampled Sampling Theorem DTFS Summary

The sampling theorem

As long as −π ≤ ωk ≤ π, we can recreate the continuous-time
signal by either (1) using sinc interpolation, or (2) regenerating a
continuous-time signal with the corresponding frequency:

fk

[
cycles

second

]
=
ωk

[
radians
sample

]
× FS

[
samples
second

]
2π
[
radians
cycle

]

x [n] = cos(ωkn + θk) → x(t) = cos(2πfkt + θk)
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The sampling theorem

A continuous-time signal x(t) with frequencies no higher than
fmax can be reconstructed exactly from its samples x [n] =
x(nTS) if the samples are taken at a rate Fs = 1/Ts that is
FS ≥ 2fmax .
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Continuous-Time Fourier Series

Suppose we have a continuous-time periodic signal that is already
band-limited, so its highest frequency is N−1

2T0
< Fs

2 . Its
continuous-time Fourier series is

x(t) =

(N−1)/2∑
k=−(N−1)/2

Xke
j2πkt/T0
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Is it periodic in discrete time?

If the period T0 is an integer number of samples (T0 = N/Fs),
then this signal is also periodic in discrete time:

x(t) = x(t + T0)

x [n] = x [n + N]
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Discrete-Time Fourier Series

If the signal is periodic in discrete time, then, by sampling its
continuous-time Fourier series, we get its discrete-time Fourier
series:

x [n] =

(N−1)/2∑
k=−(N−1)/2

Xke
j2πkn/FST0

=

(N−1)/2∑
k=−(N−1)/2

Xke
j2πkn/N , =

(N−1)/2∑
k=−(N−1)/2

Xke
jkω0n,

where the discrete-time fundamental frequency, expressed in
radians/sample, is

ω0 =
2πF0
Fs

=
2π

FsT0
=

2π

N
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DTFS Coefficients

Remember that the Fourier series coefficients are computed as

Xk =
1

T0

∫ T0

0
x(t)e−j2πkt/T0dt

If the signal is periodic in discrete time (if T0 is an integer number
of samples), then we can compute exactly the same coefficients by
averaging in discrete time:

Xk =
1

N

N−1∑
0

x [n]e−j2πkn/N
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Discrete-Time Fourier Series

If x [n] is periodic with period N, then it has a Fourier series

x [n] =

(N−1)/2∑
k=−(N−1)/2

Xke
j 2πkn

N ,

whose coefficients can be computed as

Xk =
1

N

N−1∑
0

x [n]e−j
2πkn
N
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Spectrum Plots

The spectrum plot of a periodic signal is a plot with

frequency on the X-axis,

showing a vertical spike at each frequency component,

each of which is labeled with the corresponding phasor.
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Spectrum Plot of a Discrete-Time Periodic Signal

The spectrum plot of a discrete-time periodic signal is a regular
spectrum plot, but with the X-axis relabeled. Instead of frequency

in Hertz=
[

cycles
second

]
, we use

ω

[
radians

sample

]
=

2π
[

radians
cycle

]
f
[

cycles
second

]
Fs
[

samples
second

]
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The sampling theorem

A continuous-time signal x(t) with frequencies no higher than
fmax can be reconstructed exactly from its samples x [n] =
x(nTS) if the samples are taken at a rate Fs = 1/Ts that is
FS ≥ 2fmax .
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