Lecture 7: Sampling and Aliasing

Mark Hasegawa-Johnson
These slides are in the public domain.

ECE 401: Signal and Image Analysis

- Review: Spectrum of continuous-time signals
- 2 Sampling
- 3 Aliasing
- 4 Aliased Frequency
- 6 Aliased Phase
- **6** Summary
- Written Example

Outline

- Review: Spectrum of continuous-time signals
- 2 Sampling
- 3 Aliasing
- Aliased Frequency
- 6 Aliased Phase
- 6 Summary
- Written Example

Two-sided spectrum

The **spectrum** of x(t) is the set of frequencies, and their associated phasors,

Spectrum
$$(x(t)) = \{(f_{-N}, a_{-N}), \dots, (f_0, a_0), \dots, (f_N, a_N)\}$$

such that

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

Fourier's theorem

One reason the spectrum is useful is that **any** periodic signal can be written as a sum of cosines. Fourier's theorem says that any x(t) that is periodic, i.e.,

$$x(t+T_0)=x(t)$$

can be written as

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k F_0 t}$$

which is a special case of the spectrum for periodic signals: $f_k = kF_0$, and $a_k = X_k$, and

$$F_0 = \frac{1}{T_0}$$

Fourier Series

• Analysis (finding the spectrum, given the waveform):

$$X_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi kt/T_0} dt$$

• Synthesis (finding the waveform, given the spectrum):

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$$

Outline

- Review: Spectrum of continuous-time signals
- 2 Sampling
- Aliasing
- 4 Aliased Frequency
- 6 Aliased Phase
- 6 Summary
- Written Example

How to sample a continuous-time signal

Suppose you have some continuous-time signal, x(t), and you'd like to sample it, in order to store the sample values in a computer. The samples are collected once every $T_s = \frac{1}{F_s}$ seconds:

$$x[n] = x(t = nT_s)$$

Example: a 1kHz sine wave

For example, suppose $x(t) = \sin(2\pi 1000t)$. By sampling at $F_s = 16000$ samples/second, we get

$$x[n] = \sin\left(2\pi 1000 \frac{n}{16000}\right) = \sin(\pi n/8)$$

Outline

- Review: Spectrum of continuous-time signals
- 2 Sampling
- 3 Aliasing
- 4 Aliased Frequency
- 6 Aliased Phase
- **6** Summary
- Written Example

Can every sine wave be reconstructed from its samples?

The question immediately arises: can every sine wave be reconstructed from its samples?

The answer, unfortunately, is "no."

Can every sine wave be reconstructed from its samples?

For example, two signals $x_1(t)$ and $x_2(t)$, at 10kHz and 6kHz respectively:

$$x_1(t) = \cos(2\pi 10000t), \quad x_2(t) = \cos(2\pi 6000t)$$

Let's sample them at $F_s = 16,000$ samples/second:

$$x_1[n] = \cos\left(2\pi 10000 \frac{n}{16000}\right), \quad x_2[n] = \cos\left(2\pi 6000 \frac{n}{16000}\right)$$

Simplifying a bit, we discover that $x_1[n] = x_2[n]$. We say that the 10kHz tone has been "aliased" to 6kHz:

$$x_1[n] = \cos\left(\frac{5\pi n}{4}\right) = \cos\left(\frac{3\pi n}{4}\right)$$

 $x_2[n] = \cos\left(\frac{3\pi n}{4}\right) = \cos\left(\frac{5\pi n}{4}\right)$

Can every sine wave be reconstructed from its samples?

What is the highest frequency that can be reconstructed?

The minimum sampling rate that avoids aliasing is called the **Nyquist rate**, and it is $F_s = 2f$. Conversely, we talk about the the **Nyquist frequency**, $F_N = F_S/2$, which is the highest frequency pure tone that can be reconstructed at sampling rate F_s . If $x(t) = \cos(2\pi F_N t)$, then

$$x[n] = \cos\left(2\pi F_N \frac{n}{F_S}\right) = \cos(\pi n) = (-1)^n$$

Nyquist rate vs. Nyquist frequency

Unfortunately, due to historical reasons, the terms "Nyquist rate" and "Nyquist frequency" are sort of opposite in meaning:

- The Nyquist rate is the **lowest sampling rate** at which you can sample a signal without aliasing. If the highest frequency in a signal is f, then the Nyquist rate is $F_s = 2f$.
- The Nyquist frequency is the **highest frequency** that will be reproduced without aliasing, i.e., $F_N = F_s/2$.

Sampling below Nyquist rate \Rightarrow Aliasing to a frequency below the Nyquist frequency

If you try to sample below the **Nyquist rate** ($F_s < 2f$, like the one shown on the left), then the tone gets aliased to a **frequency alias** f_a below the **Nyquist frequency** ($f_a < F_N$, like the one shown on the right).

When does aliasing happen?

Aliasing happens:

- When a continuous-time signal, $x(t) = \cos(2\pi ft)$, is sampled below the Nyquist rate: $F_s < 2f$.
- When a tone has already been sampled at a high enough sampling rate, but then you downsample to a rate below Nyquist.

For example, suppose you have sampled at $F_s = 2.88f$, so that you have

$$x[n] = \cos\left(\frac{2\pi f}{F_s}n\right) = \cos\left(\frac{2\pi}{2.88}n\right),$$

but if you then **downsample** by throwing away every second sample,

$$y[n] = x[2n]$$
, integer values of n ,

then you wind up with a new sampling rate of only $F_s=1.44f$, which means the signal can be aliased to a lower frequency below Nyquist:

$$y[n] = \cos\left(\frac{2\pi}{1.44}n\right) = \cos\left(\left(2\pi - \frac{2\pi}{1.44}\right)n\right) = \cos\left(\frac{0.88\pi}{1.44}n\right)$$

Outline

- Review: Spectrum of continuous-time signals
- 2 Sampling
- 3 Aliasing
- 4 Aliased Frequency
- 6 Aliased Phase
- 6 Summary
- Written Example

Suppose you have a cosine at frequency f:

$$x(t) = \cos(2\pi f t)$$

Suppose you sample it at F_s samples/second. If F_s is not high enough, it might get aliased to some other frequency, f_a .

$$x[n] = \cos(2\pi f n/F_s) = \cos(2\pi f_a n/F_s)$$

How can you predict what f_a will be?

Aliasing comes from two sources:

$$cos(\phi) = cos(2\pi n - \phi)$$

 $cos(\phi) = cos(\phi - 2\pi n)$

The equations above are true for any integer n.

Let's plug in $\phi=\frac{2\pi fn}{F_{\rm s}}$, and $2\pi=\frac{2\pi F_{\rm s}}{F_{\rm s}}.$ That gives us:

$$\cos\left(\frac{2\pi fn}{F_s}\right) = \cos\left(\frac{2\pi n(F_s - f)}{F_s}\right)$$
$$\cos\left(\frac{2\pi fn}{F_s}\right) = \cos\left(\frac{2\pi (f - F_s)n}{F_s}\right)$$

So a discrete-time cosine at frequency f is also a cosine at frequency $F_s - f$, and it's also a cosine at $f - F_s$.

Spectrum of a Continuous-time Cosine

A continuous-time cosine is the sum of two complex exponentials:

$$\cos(0.75\pi n) = \frac{1}{2}e^{j0.75\pi n} + \frac{1}{2}e^{-j0.75\pi n}$$

Spectrum of a Discrete-time Cosine

A discrete-time cosine is **still** just the sum of two complex exponentials, but each of those two complex exponentials is identical to an exponential at any other multiple of 2π :

$$e^{j2.75\pi n} = e^{-j2\pi n}e^{j0.75\pi n} = e^{j0.75\pi n}$$

Spectrum of an Aliased Discrete-time Cosine

Now consider what happens as we lower F_s . As we lower F_s , the frequency $\omega=\frac{2\pi f}{F_s}$ gets higher and higher, until aliasing occurs:

$$\cos(\omega n) = \cos((2\pi - \omega)n)$$

- A discrete-time cosine at frequency f is also a cosine at frequency $F_s f$, and it's also a cosine at $f F_s$.
- So which of those frequencies will we hear when we play the sinusoid back again?
- **ANSWER:** any frequency that can be reconstructed by the analog-to-digital converter. That means any frequency below the Nyquist frequency, $F_N = F_s/2$.

All of the following frequencies are actually **the same frequency** when a cosine is sampled at F_s samples/second.

$$f_a \in \{f - \ell F_s, \ell F_s - f : \ell \in \text{any integer}\}$$

The "aliased frequency" is whichever of those is below Nyquist $(F_s/2)$. Usually there's only one that's below Nyquist, so you can just look for

$$f_a = \min(f - \ell F_s, \ell F_s - f : \ell \in \text{any integer})$$

Outline

- Review: Spectrum of continuous-time signals
- 2 Sampling
- 3 Aliasing
- 4 Aliased Frequency
- 6 Aliased Phase
- 6 Summary
- Written Example

Sine is Different

Sine waves are different for the following reason:

$$\sin(\phi) = -\sin(2\pi n - \phi)$$
$$\sin(\phi) = \sin(\phi - 2\pi n)$$

Sine is Different

Therefore:

$$\sin\left(\frac{2\pi fn}{F_s}\right) = -\sin\left(\frac{2\pi n(F_s - f)}{F_s}\right)$$
$$\sin\left(\frac{2\pi fn}{F_s}\right) = \sin\left(\frac{2\pi (f - F_s)n}{F_s}\right)$$

So a discrete-time sine at frequency f is also a **negative** sine at frequency $F_s - f$, and a **positive** sine at frequency $f - F_s$.

Spectrum of a Continuous-time Sine

A continuous-time sine is the **difference** of two complex exponentials:

$$\sin(0.75\pi n) = \frac{1}{2j}e^{j0.75\pi n} - \frac{1}{2j}e^{-j0.75\pi n}$$

Spectrum of a Discrete-time Sine

A discrete-time sine is still just the difference of two complex exponentials, but each of those two complex exponentials is identical to an exponential at any other multiple of 2π :

$$e^{j2.75\pi n} = e^{-j2\pi n}e^{j0.75\pi n} = e^{j0.75\pi n}$$

Spectrum of an Aliased Discrete-time Sine

Now consider what happens as we lower F_s . As we lower F_s , the frequency $\omega=\frac{2\pi f}{F_s}$ gets higher and higher, until aliasing occurs:

$$\sin(\omega n) = -\sin((2\pi - \omega)n)$$

Aliased Phase of a General Phasor

For a general complex exponential, we get:

$$ze^{j\phi} = ze^{j(\phi-2\pi n)} = \left(z^*e^{j(2\pi n-\phi)}\right)^*$$

Therefore:

$$\Re\left\{ze^{j\frac{2\pi fn}{F_s}}\right\} = \Re\left\{ze^{j\frac{2\pi (f-F_s)n}{F_s}}\right\} = \Re\left\{z^*e^{j\frac{2\pi (F_s-f)n}{F_s}}\right\}$$

Aliased Phase of a General Phasor

Suppose we have some frequency f, and we're trying to find its aliased frequency f_a .

• Among the several possibilities, if $f_a = F_s - f$ is below Nyquist, then that's the frequency we'll hear. Its phasor will be the complex conjugate of the original phasor,

$$z_a = z^*$$

• On the other hand, if $f_a = f - F_s$ is below Nyquist, then that's the frequency we'll hear. Its phasor will be the same as the phasor of the original sinusoid:

$$z_a = z$$

Aliased Phase of a General Phasor

Try the Quiz!

Go to the course webpage, and try today's quiz!

Outline

- Review: Spectrum of continuous-time signals
- 2 Sampling
- 3 Aliasing
- 4 Aliased Frequency
- 6 Aliased Phase
- **6** Summary
- Written Example

Summary

- A sampled sinusoid can be reconstructed perfectly if the Nyquist criterion is met, $f < \frac{F_s}{2}$.
- If the Nyquist criterion is violated, then:
 - If $\frac{F_s}{2} < f < F_s$, then it will be aliased to

$$f_a = F_s - f$$
$$z_a = z^*$$

i.e., the sign of all sines will be reversed.

• If $F_s < f < \frac{3F_s}{2}$, then it will be aliased to

$$f_a = f - F_s$$
$$z_a = z$$

Outline

- Review: Spectrum of continuous-time signals
- 2 Sampling
- 3 Aliasing
- 4 Aliased Frequency
- 6 Aliased Phase
- 6 Summary
- Written Example

Written Example

Sketch a sinusoid with some arbitrary phase (say, $-\pi/4$). Show where the samples are if it's sampled:

- more than twice per period
- more than once per period, but less than twice per period
- less than once per period