
Review Sampling Aliasing Aliased Frequency Aliased Phase Summary Example

Lecture 7: Sampling and Aliasing

Mark Hasegawa-Johnson
These slides are in the public domain.

ECE 401: Signal and Image Analysis



Review Sampling Aliasing Aliased Frequency Aliased Phase Summary Example

1 Review: Spectrum of continuous-time signals

2 Sampling

3 Aliasing

4 Aliased Frequency

5 Aliased Phase

6 Summary

7 Written Example



Review Sampling Aliasing Aliased Frequency Aliased Phase Summary Example

Outline

1 Review: Spectrum of continuous-time signals

2 Sampling

3 Aliasing

4 Aliased Frequency

5 Aliased Phase

6 Summary

7 Written Example



Review Sampling Aliasing Aliased Frequency Aliased Phase Summary Example

Two-sided spectrum

The spectrum of x(t) is the set of frequencies, and their
associated phasors,

Spectrum (x(t)) = {(f−N , a−N), . . . , (f0, a0), . . . , (fN , aN)}

such that

x(t) =
N∑

k=−N
ake

j2πfk t
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Fourier’s theorem

One reason the spectrum is useful is that any periodic signal can
be written as a sum of cosines. Fourier’s theorem says that any
x(t) that is periodic, i.e.,

x(t + T0) = x(t)

can be written as

x(t) =
∞∑

k=−∞
Xke

j2πkF0t

which is a special case of the spectrum for periodic signals:
fk = kF0, and ak = Xk , and

F0 =
1

T0
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Fourier Series

Analysis (finding the spectrum, given the waveform):

Xk =
1

T0

∫ T0

0
x(t)e−j2πkt/T0dt

Synthesis (finding the waveform, given the spectrum):

x(t) =
∞∑

k=−∞
Xke

j2πkt/T0
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How to sample a continuous-time signal

Suppose you have some continuous-time signal, x(t), and you’d
like to sample it, in order to store the sample values in a computer.
The samples are collected once every Ts = 1

Fs
seconds:

x [n] = x(t = nTs)
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Example: a 1kHz sine wave

For example, suppose x(t) = sin(2π1000t). By sampling at
Fs = 16000 samples/second, we get

x [n] = sin
(

2π1000
n

16000

)
= sin(πn/8)
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Can every sine wave be reconstructed from its samples?

The question immediately arises: can every sine wave be
reconstructed from its samples?
The answer, unfortunately, is “no.”
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Can every sine wave be reconstructed from its samples?

For example, two signals x1(t) and x2(t), at 10kHz and 6kHz
respectively:

x1(t) = cos(2π10000t), x2(t) = cos(2π6000t)

Let’s sample them at Fs = 16, 000 samples/second:

x1[n] = cos
(

2π10000
n

16000

)
, x2[n] = cos

(
2π6000

n

16000

)
Simplifying a bit, we discover that x1[n] = x2[n]. We say that the
10kHz tone has been “aliased” to 6kHz:

x1[n] = cos

(
5πn

4

)
= cos

(
3πn

4

)
x2[n] = cos

(
3πn

4

)
= cos

(
5πn

4

)
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Can every sine wave be reconstructed from its samples?
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What is the highest frequency that can be reconstructed?

The minimum sampling rate that avoids aliasing is called the
Nyquist rate, and it is Fs = 2f . Conversely, we talk about the the
Nyquist frequency, FN = FS/2, which is the highest frequency
pure tone that can be reconstructed at sampling rate Fs . If
x(t) = cos(2πFNt), then

x [n] = cos

(
2πFN

n

FS

)
= cos(πn) = (−1)n
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Nyquist rate vs. Nyquist frequency

Unfortunately, due to historical reasons, the terms “Nyquist rate”
and “Nyquist frequency” are sort of opposite in meaning:

The Nyquist rate is the lowest sampling rate at which you
can sample a signal without aliasing. If the highest frequency
in a signal is f , then the Nyquist rate is Fs = 2f .

The Nyquist frequency is the highest frequency that will be
reproduced without aliasing, i.e., FN = Fs/2.
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Sampling below Nyquist rate ⇒ Aliasing to a frequency
below the Nyquist frequency

If you try to sample below the Nyquist rate (Fs < 2f , like the one
shown on the left), then the tone gets aliased to a frequency alias
fa below the Nyquist frequency (fa < FN , like the one shown on
the right).



Review Sampling Aliasing Aliased Frequency Aliased Phase Summary Example

When does aliasing happen?

Aliasing happens:

When a continuous-time signal, x(t) = cos(2πft), is sampled
below the Nyquist rate: Fs < 2f .

When a tone has already been sampled at a high enough
sampling rate, but then you downsample to a rate below
Nyquist.
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For example, suppose you have sampled at Fs = 2.88f , so that you
have

x [n] = cos

(
2πf

Fs
n

)
= cos

(
2π

2.88
n

)
,

but if you then downsample by throwing away every second
sample,

y [n] = x [2n], integer values of n,

then you wind up with a new sampling rate of only Fs = 1.44f ,
which means the signal can be aliased to a lower frequency below
Nyquist:

y [n] = cos

(
2π

1.44
n

)
= cos

((
2π − 2π

1.44

)
n

)
= cos

(
0.88π

1.44
n

)
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Aliased Frequency

Suppose you have a cosine at frequency f :

x(t) = cos(2πft)

Suppose you sample it at Fs samples/second. If Fs is not high
enough, it might get aliased to some other frequency, fa.

x [n] = cos(2πfn/Fs) = cos(2πfan/Fs)

How can you predict what fa will be?
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Aliased Frequency

Aliasing comes from two sources:

cos(φ) = cos(2πn − φ)

cos(φ) = cos(φ− 2πn)

The equations above are true for any integer n.



Review Sampling Aliasing Aliased Frequency Aliased Phase Summary Example

Aliased Frequency

Let’s plug in φ = 2πfn
Fs

, and 2π = 2πFs
Fs

. That gives us:

cos

(
2πfn

Fs

)
= cos

(
2πn(Fs − f )

Fs

)
cos

(
2πfn

Fs

)
= cos

(
2π(f − Fs)n

Fs

)
So a discrete-time cosine at frequency f is also a cosine at
frequency Fs − f , and it’s also a cosine at f − Fs .
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Spectrum of a Continuous-time Cosine

A continuous-time cosine is the sum of two complex exponentials:

cos(0.75πn) =
1

2
e j0.75πn +

1

2
e−j0.75πn
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Spectrum of a Discrete-time Cosine

A discrete-time cosine is still just the sum of two complex
exponentials, but each of those two complex exponentials is
identical to an exponential at any other multiple of 2π:

e j2.75πn = e−j2πne j0.75πn = e j0.75πn
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Spectrum of an Aliased Discrete-time Cosine

Now consider what happens as we lower Fs . As we lower Fs , the
frequency ω = 2πf

Fs
gets higher and higher, until aliasing occurs:

cos (ωn) = cos ((2π − ω)n)
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Aliased Frequency

A discrete-time cosine at frequency f is also a cosine at
frequency Fs − f , and it’s also a cosine at f − Fs .

So which of those frequencies will we hear when we play the
sinusoid back again?

ANSWER: any frequency that can be reconstructed by the
analog-to-digital converter. That means any frequency below
the Nyquist frequency, FN = Fs/2.
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Aliased Frequency
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Aliased Frequency
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Aliased Frequency

All of the following frequencies are actually the same frequency
when a cosine is sampled at Fs samples/second.

fa ∈ {f − `Fs , `Fs − f : ` ∈ any integer}

The “aliased frequency” is whichever of those is below Nyquist
(Fs/2). Usually there’s only one that’s below Nyquist, so you can
just look for

fa = min (f − `Fs , `Fs − f : ` ∈ any integer)
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Sine is Different

Sine waves are different for the following reason:

sin(φ) = − sin(2πn − φ)

sin(φ) = sin(φ− 2πn)
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Sine is Different

Therefore:

sin

(
2πfn

Fs

)
= − sin

(
2πn(Fs − f )

Fs

)
sin

(
2πfn

Fs

)
= sin

(
2π(f − Fs)n

Fs

)
So a discrete-time sine at frequency f is also a negative sine at
frequency Fs − f , and a positive sine at frequency f − Fs .
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Spectrum of a Continuous-time Sine

A continuous-time sine is the difference of two complex
exponentials:

sin(0.75πn) =
1

2j
e j0.75πn − 1

2j
e−j0.75πn



Review Sampling Aliasing Aliased Frequency Aliased Phase Summary Example

Spectrum of a Discrete-time Sine

A discrete-time sine is still just the difference of two complex
exponentials, but each of those two complex exponentials is
identical to an exponential at any other multiple of 2π:

e j2.75πn = e−j2πne j0.75πn = e j0.75πn
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Spectrum of an Aliased Discrete-time Sine

Now consider what happens as we lower Fs . As we lower Fs , the
frequency ω = 2πf

Fs
gets higher and higher, until aliasing occurs:

sin (ωn) = − sin ((2π − ω)n)
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Aliased Phase of a General Phasor

For a general complex exponential, we get:

ze jφ = ze j(φ−2πn) =
(
z∗e j(2πn−φ)

)∗
Therefore:

<
{
ze j

2πfn
Fs

}
= <

{
ze j

2π(f−Fs )n
Fs

}
= <

{
z∗e j

2π(Fs−f )n
Fs

}
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Aliased Phase of a General Phasor

Suppose we have some frequency f , and we’re trying to find its
aliased frequency fa.

Among the several possibilities, if fa = Fs − f is below
Nyquist, then that’s the frequency we’ll hear. Its phasor will
be the complex conjugate of the original phasor,

za = z∗

On the other hand, if fa = f − Fs is below Nyquist, then
that’s the frequency we’ll hear. Its phasor will be the same as
the phasor of the original sinusoid:

za = z
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Aliased Phase of a General Phasor
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Try the Quiz!

Go to the course webpage, and try today’s quiz!
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Summary

A sampled sinusoid can be reconstructed perfectly if the
Nyquist criterion is met, f < Fs

2 .

If the Nyquist criterion is violated, then:

If Fs

2 < f < Fs , then it will be aliased to

fa = Fs − f

za = z∗

i.e., the sign of all sines will be reversed.
If Fs < f < 3Fs

2 , then it will be aliased to

fa = f − Fs

za = z
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Written Example

Sketch a sinusoid with some arbitrary phase (say, −π/4). Show
where the samples are if it’s sampled:

more than twice per period

more than once per period, but less than twice per period

less than once per period
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