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Two-sided spectrum

The spectrum of x(t) is the set of frequencies, and their
associated phasors,

Spectrum (x(t)) = {(f-n,a-n),- .-, (fo,a0), .-, (fn,an)}

such that
N

x(t)= ) aelmh

k=—N
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Fourier's theorem

One reason the spectrum is useful is that any periodic signal can
be written as a sum of cosines. Fourier's theorem says that any
x(t) that is periodic, i.e.,

x(t+ To) = x(t)

can be written as
o0
X(t) — Z Xkej27rkF0t
k=—00
which is a special case of the spectrum for periodic signals:

f, = kFp, and ax = X, and

Fo= —
0 TO
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Fourier Series

e Analysis (finding the spectrum, given the waveform):

1 [To .
X, = / x(t)e2mkt/ To gy
To

e Synthesis (finding the waveform, given the spectrum):

X(t Z X e]27rkt/T0

k=—o0
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How to sample a continuous-time signal

Suppose you have some continuous-time signal, x(t), and you'd
like to sample it, in order to store the sample values in a computer.
The samples are collected once every T = ,_-is seconds:

x[n] = x(t = nTs)
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Example: a 1kHz sine wave

For example, suppose x(t) = sin(27r1000t). By sampling at
Fs = 16000 samples/second, we get

x[n] = sin (2w1000W€’OO) — sin(7n/8)

Continuous-time signal x(t) = sin(2m1000t)

[

00 02 04 06 0.8 10
Time (ms)

Discrete-time signal x[n] = sin(271000n/16000) = sin(rn/8)

HEEENE
T

o 2 4 6 8 10 12 14
Time (samples)
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Can every sine wave be reconstructed from its samples?

The question immediately arises: can every sine wave be
reconstructed from its samples?
The answer, unfortunately, is “no.”



Aliasing
[o] TeIeYololele}

Can every sine wave be reconstructed from its samples?

For example, two signals xi(t) and x2(t), at 10kHz and 6kHz
respectively:

x1(t) = cos(2mr10000t), xo(t) = cos(276000t)

Let's sample them at Fs = 16,000 samples/second:

xoln] = cos ( 16000)

xafn] = cos < 16000)

Simplifying a bit, we discover that x;[n] = xz[n]. We say that the
10kHz tone has been “aliased” to 6kHz:

xa[n] = cos <5z> ~ cos <3Z>
o) o)
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Can every sine wave be reconstructed from its samples?

Continuous-time signal x(t) = cos(2n10000t) Continuous-time signal x(t) = cos(2n6000t)
10 1.0
. “NANDNA NS
0.0 0.0
SILVAVRVAYAVAY
-1.0 -1.0
0 0.2 0.4 0.6 0.8 10

0.0 02 04 06 0.8 10 o
Time (ms) Time (ms)

Discrete-time signal x[n] = cos(210000n/16000) = cos(5nn/4) = cos(3nn/4) Discrete-time signal x[n] = cos(2m6000n/16000) = cos(3nn/4) = cos(5nn/4)
- [ [ [ [ - [ [ [ [
00 0.0

e l J l J e l l l

o 2 4 6 8 10 12 14 o 2 4 6 8 10 12 14
Time (samples) Time (samples)




Aliasing
000®0000

What is the highest frequency that can be reconstructed?

The minimum sampling rate that avoids aliasing is called the
Nyquist rate, and it is F; = 2f. Conversely, we talk about the the
Nyquist frequency, Fy = Fs/2, which is the highest frequency
pure tone that can be reconstructed at sampling rate Fg. If

x(t) = cos(2mFpt), then

x[n] = cos (%FNF’;) = cos(rn) = (—1)"

Continuous-time signal x(t) = cos(2m8000t)

S A AN A4 A AN AN ANV
AV VNV VNV VYV

Time (ms)

Discrete-time signal x[n] = cos(2m8000n/16000) = cos(mn) = (~1)"

2 S N N ) AN D
< 1 7 ]
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Nyquist rate vs. Nyquist frequency

Unfortunately, due to historical reasons, the terms “Nyquist rate”
and “Nyquist frequency” are sort of opposite in meaning:

@ The Nyquist rate is the lowest sampling rate at which you
can sample a signal without aliasing. If the highest frequency
in a signal is f, then the Nyquist rate is F5 = 2f.

@ The Nyquist frequency is the highest frequency that will be
reproduced without aliasing, i.e., Fy = Fs/2.
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Sampling below Nyquist rate = Aliasing to a frequency

below the Nyquist frequency

If you try to sample below the Nyquist rate (Fs < 2f, like the one
shown on the left), then the tone gets aliased to a frequency alias
fo below the Nyquist frequency (f, < Fy, like the one shown on
the right).

Continuous-time signal x(t) = cos(2n10000t) Continuous-time signal x(t) = cos(2n6000t)
10 1.0
0.0 0.0
SV
-1.0 -1.0

0.0 02 04 06 0.8 10 o. X .
Time (ms) Time (ms)

Discrete-time signal x[n] = cos(2n10000n/16000) = cos(5nn/4) = cos(3nn/4) Discrete-time signal x[n] = cos(2n6000n/16000) = cos(3nn/4) = cos(5nn/4)
- [ [ [ [ - [ I I [
00 0.0

e J l I l o l I l

o 2 4 6 8 10 12 1 o 2 4 6 8 10 2 14
Time (samples) Time (samples)
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When does aliasing happen?

Aliasing happens:
e When a continuous-time signal, x(t) = cos(27ft), is sampled
below the Nyquist rate: Fs < 2f.
@ When a tone has already been sampled at a high enough

sampling rate, but then you downsample to a rate below
Nyquist.
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For example, suppose you have sampled at F; = 2.88f, so that you

have
x[n] = cos 27Tfn = cos 2—Fn
- Fs ') 2.88 )7

but if you then downsample by throwing away every second
sample,

y[n] = x[2n], integer values of n,

then you wind up with a new sampling rate of only Fs = 1.44f,
which means the signal can be aliased to a lower frequency below
Nyquist:

[n] = cos 2—7rn =cos| (2 —Q—W = cos O'887rn
Y= \144") = "T1aa)") " 1.44
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Aliased Frequency

Suppose you have a cosine at frequency f:
x(t) = cos(2rft)

Suppose you sample it at Fs samples/second. If Fs is not high
enough, it might get aliased to some other frequency, f,.

x[n] = cos(2nfn/Fs) = cos(2mfyn/Fs)

How can you predict what £, will be?
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Aliased Frequency

0 ] 2m-¢ 2n ¢+2n

Aliasing comes from two sources:

cos(@) =
cos(¢)

os(2mn — ¢)

c
cos(¢ — 27n)

The equations above are true for any integer n.
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Aliased Frequency

0 ] m-¢ 2n ¢+2n

Let's plug in ¢ = 2”:", and 27 = 27”:5 That gives us:

2rfn\ 2nn(Fs — f)
cos £ cos —F

cos 2rfn ~ cos 2n(f — Fs)n
Fs ) Fs

So a discrete-time cosine at frequency f is also a cosine at
frequency Fs — f, and it's also a cosine at f — Fs.
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Spectrum of a Continuous-time Cosine

A continuous-time cosine is the sum of two complex exponentials:

1 1
COS(O.757TI7) = 5910'757”7 + 56*10.757rn

0.0 == == --=-

—0.751 0.751
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Spectrum of a Discrete-time Cosine

A discrete-time cosine is still just the sum of two complex
exponentials, but each of those two complex exponentials is
identical to an exponential at any other multiple of 27:

ej2.757rn — efj27rnejO.757rn — ej0.757rn

S T

—-—
—-
—
o

—3.2582.75n —1.2580.75n 0.7511.25n 2.7513.25n
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Spectrum of an Aliased Discrete-time Cosine

Now consider what happens as we lower Fs. As we lower F, the
2rf

frequency w = £~ gets higher and higher, until aliasing occurs:

cos (wn) = cos ((2m — w)n)

S T

—-a
—-02
—]
o

—3.2582.75m —1.2580.75n 0.7511.251 2.7513.25n

(=]
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Aliased Frequency

@ A discrete-time cosine at frequency f is also a cosine at
frequency Fs — f, and it's also a cosine at f — Fs.

@ So which of those frequencies will we hear when we play the
sinusoid back again?

@ ANSWER: any frequency that can be reconstructed by the
analog-to-digital converter. That means any frequency below
the Nyquist frequency, Fy = Fs/2.
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Aliased Frequency

4Hz, at Fs=9 Hz, looks like 4Hz

00 02 04 0.6 0.8 10
4Hz, at Fs=8 Hz, looks like 4Hz

0.0 02 04 06 0.8 10
4Hz, at Fs=7 Hz, looks like 3Hz

00 02 04 06 0.8 10
4Hz, at Fs=6 Hz, looks like 2Hz

0.0 02 04 06 0.8 10
4Hz, at Fs=5 Hz, looks like 1Hz
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Aliased Frequency

4Hz, at Fs=4.5 Hz, looks like 0.5Hz

0.00 025 0.50 075 1.00 125 150 175 2.00
4Hz, at Fs=4 Hz, looks like 0Hz

0.00 025 050 075 1.00 125 150 175 2.00
4Hz, at Fs=3.5 Hz, looks like 0.5Hz

0.00 025 0.50 075 1.00 125 150 175 2.00
4Hz, at Fs=3 Hz, looks like 1Hz

0.00 025 050 075 1.00 125 150 175 2.00
4Hz, at Fs=2.5 Hz, looks like 1Hz
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Aliased Frequency

All of the following frequencies are actually the same frequency
when a cosine is sampled at Fs samples/second.

fo € {f —UFs,lFs — f : £ € any integer}

The “aliased frequency” is whichever of those is below Nyquist
(Fs/2). Usually there's only one that's below Nyquist, so you can
just look for

fa=min(f — (Fs,lFs — f : £ € any integer)
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Sine is Different

0 6 2m-¢ 2n ¢+ 2n

Sine waves are different for the following reason:

sin(¢) = —sin(2wn — ¢)
sin(¢) = sin(¢ — 27n)
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Sine is Different

0 6 2m-¢ 2n o+21

sin 27 fin = —sin w
Fs ) F,

.n 27rfn e 'n M
Sl F. = sl F.

So a discrete-time sine at frequency f is also a negative sine at
frequency Fs — f, and a positive sine at frequency f — F;.

Therefore:
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Spectrum of a Continuous-time Sine

A continuous-time sine is the difference of two complex
exponentials:

1 . 1 .
sin(0.757mn) = — /075 _ ~ o=j0.75mn
( ) 2j 2j

0.8

0.6

0.4

0.2

0.0 -
~0.2
_0.a

—0.6 1

—0.81

—0.751 0.75m
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Spectrum of a Discrete-time Sine

A discrete-time sine is still just the difference of two complex
exponentials, but each of those two complex exponentials is
identical to an exponential at any other multiple of 27:

ej2.757rn — efj27rnejO.757rn — ej0.757rn

e
~

I R R
T T T

—3.2582.75n —1.2580.75n 0.7511.25n 2.7513.25n
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Spectrum of an Aliased Discrete-time Sine

Now consider what happens as we lower Fs. As we lower F, the
2rf

frequency w = £~ gets higher and higher, until aliasing occurs:

sin (wn) = —sin ((2m — w)n)

D N
[ I N

—3.2582.75m —1.2580.75n 0.7511.251 2.7513.25n

(=]
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Aliased Phase of a General Phasor

For a general complex exponential, we get:
zel® = Zei(¢_277") — <Z>‘<ej(27rn—<;5)>>.<

Therefore:

%{zejzgsfn} - {Zej2ﬂ'(fF—st)n} _ 3[E{Z*ejzw(rzs—f)n}




Aliased Phase
000000800

Aliased Phase of a General Phasor

Suppose we have some frequency f, and we're trying to find its
aliased frequency f..
@ Among the several possibilities, if f; = Fs — f is below
Nyquist, then that's the frequency we'll hear. Its phasor will
be the complex conjugate of the original phasor,

z,=2z"

@ On the other hand, if f, = f — Fs is below Nyquist, then
that's the frequency we'll hear. Its phasor will be the same as
the phasor of the original sinusoid:

Za=2Z
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Aliased Phase of a General Phasor

4Hz at —n/4 phase, at Fs=30 Hz, looks like 4Hz with phase of —n/4

Tr AT T,

T . A * y N .
NUZARND Y

4Hz at —n/4 phase, at Fs=11 Hz, looks like 4Hz with phase of —n/4

4Hz at —n/4 phase, at Fs=10 Hz, looks like 4Hz with phase of —n/4

(> /1 /]

0.0 02 04 06 0.8 10
4Hz at —n/4 phase, at Fs=5 Hz, looks like 1Hz with phase of +n/4
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Try the Quiz!

Go to the course webpage, and try today's quiz!
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Summary

@ A sampled sinusoid can be reconstructed perfectly if the
Nyquist criterion is met, f < %
o If the Nyquist criterion is violated, then:
o If % < f < Fs, then it will be aliased to

f;';:Fs_f

z,=2z"

i.e., the sign of all sines will be reversed.
o If << 355, then it will be aliased to

f:azf_Fs

Z, =2
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Written Example

Sketch a sinusoid with some arbitrary phase (say, —m/4). Show
where the samples are if it's sampled:

@ more than twice per period
@ more than once per period, but less than twice per period

@ less than once per period
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