▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Lecture 6: Operations on Periodic Signals

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis

Spectrum	Fourier Series	Time-Varying	Summary

1 Review: Spectrum

2 Spectral Properties of a Fourier Series

3 Signals with Time-Varying Fundamental Frequencies

2 Spectral Properties of a Fourier Series

3 Signals with Time-Varying Fundamental Frequencies

Spectrum	Fourier Series	Time-Varying	Summary
○●○○	000000000	00000	000
Two-sided spec	trum		

The **spectrum** of x(t) is the set of frequencies, and their associated phasors,

Spectrum
$$(x(t)) = \{(f_{-N}, a_{-N}), \dots, (f_0, a_0), \dots, (f_N, a_N)\}$$

such that

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Spectrum	Fourier Series	Time-Varying	Summary
○○●○	000000000	00000	000
Properties of th	e Spectrum		

• Scaling:

$$y(t) = \mathsf{Gx}(t) \Leftrightarrow \mathsf{a}_k o \mathsf{Ga}_k$$

Add a Constant:

$$y(t) = x(t) + C \Leftrightarrow a_k \to egin{cases} a_0 + C & k = 0 \ a_k & ext{otherwise} \end{cases}$$

• Add Signals: Suppose that the n^{th} frequency of x(t), m^{th} frequency of y(t), and k^{th} frequency of z(t) are all the same frequency. Then

$$z(t) = x(t) + y(t) \Leftrightarrow a_k \to a_n + a_m$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Spectrum	Fourier Series	Time-Varying	Summary
○○○●	000000000	00000	000
Properties of t	the Spectrum		

• Time Shift: Shifting to the right, in time, by τ seconds:

$$y(t) = x(t - \tau) \Leftrightarrow a_k \to a_k e^{-j2\pi f_k \tau}$$

• Frequency Shift: Shifting upward in frequency by F Hertz:

$$y(t) = x(t)e^{j2\pi Ft} \Leftrightarrow f_k \to f_k + F$$

• Differentiation:

$$y(t) = \frac{dx}{dt} \Leftrightarrow a_k \to j2\pi f_k a_k$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

2 Spectral Properties of a Fourier Series

3 Signals with Time-Varying Fundamental Frequencies

Spectrum	Fourier Series	Time-Varying	Summary
0000	○●00000000	00000	000
Fourier Ana	alysis and Synthesis		

• Fourier Analysis (finding the spectrum, given the waveform):

$$X_k = rac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi kt/T_0} dt$$

• Fourier Synthesis (finding the waveform, given the spectrum):

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Spectrum	Fourier Series	Time-Varying	Summary
0000	000000000	00000	000
Fourier Analysis	and Synthesis		

Compare this:

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$$

to this:

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

we see that a Fourier series is a spectrum in which the k^{th} frequency is $f_k = kF_0$, and the k^{th} phasor is $a_k = X_k$.

・ロト・西ト・西ト・西ト・日・ 今日・

The scaling property for spectra is

$$y(t) = Gx(t) \Leftrightarrow a_k \to Ga_k$$

Plugging in $f_k = kF_0$ and $a_k = X_k$, we get

$$y(t) = Gx(t) \Leftrightarrow Y_k = GX_k$$

0000	0.00	00000000	00000	000
Spectrum		Fourier Series	Time-Varying	Summary

$$y(t) = x(t) + C \Leftrightarrow a_k o \begin{cases} a_0 + C & k = 0 \\ a_k & \text{otherwise} \end{cases}$$

Plugging in $f_k = kF_0$ and $a_k = X_k$, we get

$$y(t) = x(t) + C \Leftrightarrow Y_k = \begin{cases} X_0 + C & k = 0 \\ X_k & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

		00000	000
Signal Add	lition Property		

Suppose that x(t) and y(t) have the same fundamental frequency, F_0 . In that case they have the same frequencies $f_k = kF_0$ in their spectra, so

$$z(t) = x(t) + y(t) \Leftrightarrow Z_k = X_k + Y_k$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Spectrum	Fourier Series	Time-Varying	Summary
0000		00000	000
Time Shift	Property for Fourie	er Series	

The **Time Shift** property of a spectrum is that, if you shift the signal x(t) to the right by τ seconds, then:

$$y(t) = x(t - \tau) \Leftrightarrow a_k \to a_k e^{-j2\pi f_k \tau}$$

Plugging in $f_k = kF_0$ and $a_k = X_k$, we get

$$y(t) = x(t-\tau) \Leftrightarrow Y_k = X_k e^{-j2\pi k F_0 \tau}$$

The **Frequency Shift** property for spectra says that if we multiply by a complex exponential in the time domain, that shifts the entire spectrum by F:

$$y(t) = x(t)e^{j2\pi Ft} \Leftrightarrow f_k \to f_k + F$$

Suppose that the shift frequency is $F = dF_0$, i.e., it's some integer, d, times the fundamental. Then

- The phasor X_k is no longer active at kF₀; instead, now it's active at (k + d)F₀
- We can say that Y_k , the phasor at frequency kF_0 , is the same as X_{k-d} , the phase at frequency $(k d)F_0$.

$$y(t) = x(t)e^{j2\pi Ft} \Leftrightarrow Y_k = X_{k-d}$$

Differentiat	ion Property for Fo	urier Series	
Spectrum	Fourier Series	Time-Varying	Summary
0000	○○○○○○○○	00000	000

The Differentiation property for spectra is

$$y(t) = \frac{dx}{dt} \Leftrightarrow a_k \to j2\pi f_k a_k$$

If we plug in $f_k = kF_0$ and $a_k = X_k$, we get

$$y(t) = \frac{dx}{dt} \Leftrightarrow Y_k = j2\pi k F_0 X_k$$

So differentiation in the time domain means multiplying by k in the frequency domain.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Spectrum	Fourier Series	Time-Varying	Summary
0000	○00000000●	00000	000
Quiz			

Try the quiz! Go to the course webpage, and click on today's date.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

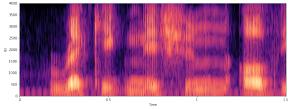
Spectrum	Fourier Series	Time-Varying	Summary
0000		●○○○○	000
Outline			

2 Spectral Properties of a Fourier Series

3 Signals with Time-Varying Fundamental Frequencies

Spectrum	Fourier Series	Time-Varying	Summary
0000	000000000	○●000	000
Spectrogram			

Many signals have time-varying fundamental frequencies. We show their spectral content by doing Fourier analysis once per 10ms or so, and plotting the log-magnitude Fourier series coefficients as an image called a **spectrogram**. For example, the spectrogram below is from part of Nicholas James Bridgewater's reading of the Universal Declaration of Human Rights



Spectrum	Fourier Series	Time-Varying	Summary
0000	0000000000	○0●00	000
Spectrogram			

The textbook demo page on spectrograms has more good examples.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Spectrum	Fourier Series	Time-Varying	Summary
0000		○00●0	000
Chirp			

You might not have noticed this, but we can write a pure tone as

$$x(t) = e^{j\phi}$$

where $\phi = 2\pi ft$ is the instantaneous phase. Notice that the relationship between frequency and phase is

$$f = \frac{1}{2\pi} \frac{d\phi}{dt}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

In the same way, we can usefully describe the **instantaneous frequency** of a chirp. For example, consider the linear chirp signal:

$$x(t) = e^{jat^2}$$

In this case, $\phi = at^2$, so

$$f = \frac{1}{2\pi} \frac{d\phi}{dt} = \frac{a}{2\pi} t$$

The frequency is now changing as a function of time. Please look at the textbook demo page for more cool examples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Spectrum	Fourier Series	Time-Varying	Summary
0000		00000	●○○
Outline			

2 Spectral Properties of a Fourier Series

3 Signals with Time-Varying Fundamental Frequencies

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Spectrum	Fourier Series	Time-Varying	Summary
0000		00000	○●○
Spectral Pro	perties of Fourier	Series	

• Scaling:

$$y(t) = Gx(t) \Leftrightarrow Y_k = GX_k$$

Add a Constant:

$$y(t) = x(t) + C \Leftrightarrow Y_k = \begin{cases} X_0 + C & k = 0 \\ X_k & \text{otherwise} \end{cases}$$

• Add Signals: Suppose that x(t) and y(t) have the same fundamental frequency, then

$$z(t) = x(t) + y(t) \Leftrightarrow Z_k = X_k + Y_k$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• **Time Shift:** Shifting to the right, in time, by τ seconds:

$$y(t) = x(t - \tau) \Leftrightarrow Y_k = X_k e^{-j2\pi k F_0 \tau}$$

• Frequency Shift: Shifting upward in frequency by F Hertz:

$$y(t) = x(t)e^{j2\pi dF_0 t} \Leftrightarrow Y_k = X_{k-d}$$

• Differentiation:

$$y(t) = \frac{dx}{dt} \Leftrightarrow Y_k = j2\pi k F_0 X_k$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで