| Beating | Spectrum | Properties | Spectrum of Beat Tones | Summary |
|---------|----------|------------|------------------------|---------|
|         |          |            |                        |         |

## Lecture 3: Spectrum

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

| Beating | Spectrum | Properties | Spectrum of Beat Tones | Summary |
|---------|----------|------------|------------------------|---------|
|         |          |            |                        |         |





- Operation of a Spectrum
- 4 Spectrum of Beat Tones





| Beating  | Spectrum | Properties | Spectrum of Beat Tones | Summary |
|----------|----------|------------|------------------------|---------|
| ●0000000 | 00000    | 00000000   |                        | 00      |
| Outline  |          |            |                        |         |





Properties of a Spectrum

4 Spectrum of Beat Tones



| Beating    | Spectrum | Properties | Spectrum of Beat Tones | Summary |
|------------|----------|------------|------------------------|---------|
| ○●000000   | 00000    | 00000000   | 00000                  | 00      |
| Beat tones |          |            |                        |         |

When two pure tones at similar frequencies are added together, you hear the two tones <u>"beating" against each other</u>.

Beat tones demo

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Beat tones can be explained using this trigonometric identity:

$$\cos(a)\cos(b) = \frac{1}{2}\cos(a+b) + \frac{1}{2}\cos(a-b)$$

Let's do the following variable substitution:

$$a + b = 2\pi f_1 t$$
$$a - b = 2\pi f_2 t$$
$$a = 2\pi f_{ave} t$$
$$b = 2\pi f_{beat} t$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where  $f_{ave} = \frac{f_1 + f_2}{2}$ , and  $f_{beat} = \frac{f_1 - f_2}{2}$ .



Re-writing the trigonometric identity, we get:

$$\frac{1}{2}\cos(2\pi f_1 t) + \frac{1}{2}\cos(2\pi f_2 t) = \cos(2\pi f_{beat} t)\cos(2\pi f_{ave} t)$$

So when we play two tones together,  $f_1 = 110$ Hz and  $f_2 = 104$ Hz, it sounds like we're playing a single tone at  $f_{ave} = 107$ Hz, multiplied by a beat frequency  $f_{beat} = 3$  (double beats)/second.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

| Beating    | Spectrum | Properties | Spectrum of Beat Tones | Summary |
|------------|----------|------------|------------------------|---------|
| ○000●000   | 00000    | 00000000   |                        | 00      |
| Beat tones |          |            |                        |         |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

by Adjwilley, CC-SA 3.0, https://commons.wikimedia.org/wiki/File:WaveInterference.gif

| 00000000 | 00000      |       | 00000 | 00 |
|----------|------------|-------|-------|----|
| Wore co  | mplex beat | tones |       |    |

What happens if we add together, say, three tones?

$$\cos(2\pi 107t) + \cos(2\pi 110t) + \cos(2\pi 104t) = ???$$

For this, and other more complicated operations, it is much, much easier to work with complex exponentials, instead of cosines.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

What happens if we add together, say, three tones?

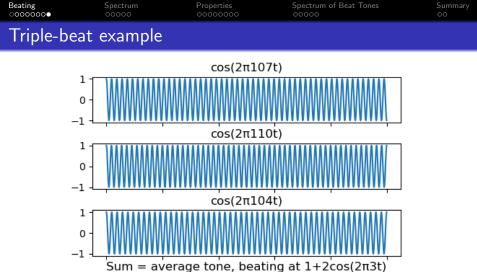
$$x(t) = \cos(2\pi 107t) + \cos(2\pi 110t) + \cos(2\pi 104t) = ???$$

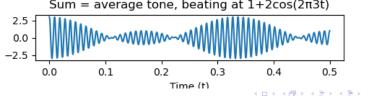
This is like a phasor example, except that all of the tones are at different frequencies.

$$\begin{aligned} x(t) &= \Re \left\{ e^{j2\pi 107t} + e^{j2\pi 110t} + e^{j2\pi 104t} \right\} \\ &= \Re \left\{ \left( 1 + e^{j2\pi 3t} + e^{-j2\pi 3t} \right) e^{j2\pi 107t} \right\} \end{aligned}$$

So we just have to do this phasor addition:

$$1 + e^{j2\pi 3t} + e^{-j2\pi 3t} = 1 + 2\cos(2\pi 3t)$$





э.

| Beating  | Spectrum | Properties | Spectrum of Beat Tones | Summary |
|----------|----------|------------|------------------------|---------|
| 00000000 | •••••    | 00000000   | 00000                  | 00      |
| Outline  |          |            |                        |         |





Properties of a Spectrum

4 Spectrum of Beat Tones





In general, if x(t) is a sum of sines and cosines,

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos\left(2\pi f_k t + \theta_k\right)$$

Then it has a phasor notation

$$x(t) = A_0 + \sum_{k=1}^N \Re \left\{ A_k e^{j\theta_k} e^{j2\pi f_k t} \right\}$$

## 

The  $\Re \{z\}$  operator is annoying. In order to get rid of it, let's take advantage of Euler's formula  $\Re \{z\} = \frac{1}{2}(z + z^*)$  to write:

$$\begin{aligned} x(t) &= A_0 + \sum_{k=1}^N A_k \cos\left(2\pi f_k t + \theta_k\right) \\ &= \sum_{k=-N}^N a_k e^{j2\pi f_k t} \end{aligned}$$

In order to do that, we need to define  $a_k$  like this:

$$a_{k} = egin{cases} A_{0} & k = 0 \ rac{1}{2}A_{k}e^{j heta_{k}} & k > 0 \ rac{1}{2}A_{-k}e^{-j heta_{-k}} & k < 0 \end{cases}$$

| Beating  | Spectrum    | Properties | Spectrum of Beat Tones | Summary |
|----------|-------------|------------|------------------------|---------|
| 00000000 | ○00●0       | 00000000   | 00000                  | 00      |
| Two-side | ed spectrum |            |                        |         |

The **spectrum** of x(t) is the set of frequencies, and their associated phasors,

Spectrum 
$$(x(t)) = \{(f_{-N}, a_{-N}), \dots, (f_0, a_0), \dots, (f_N, a_N)\}$$

such that

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

| Beating  | Spectrum | Properties | Spectrum of Beat Tones | Summary |
|----------|----------|------------|------------------------|---------|
| 00000000 | 0000     | 00000000   | 00000                  | 00      |
| Quiz     |          |            |                        |         |

Try the quiz! Go to the course webpage, and click on today's date to try the quiz.



| Beating  | Spectrum | Properties | Spectrum of Beat Tones | Summary |
|----------|----------|------------|------------------------|---------|
| 00000000 | 00000    | ●○○○○○○○   | 00000                  | 00      |
| Outline  |          |            |                        |         |





Operation of a Spectrum

4 Spectrum of Beat Tones



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

| Beating    | Spectrum   | Properties | Spectrum of Beat Tones | Summary |
|------------|------------|------------|------------------------|---------|
| 00000000   | 00000      | ○●000000   |                        | 00      |
| Properties | of a spect | rum        |                        |         |

Spectrum representation is nice to use because

- It's so general. Any signal made up of pure tones can be written this way.
- Many signal processing operations can be written directly in the spectral domain (as operations on a<sub>k</sub>), without converting back to x(t).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Beating
 Spectrum
 Properties
 Spectrum of Beat Tones
 Summary of

 Property #1: Scaling
 Vertical Scaling
 Vertical Scaling
 Vertical Scaling

Suppose we have a signal

$$\mathbf{x}(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

Suppose we scale it by a factor of G:

$$y(t) = Gx(t)$$

That just means that we scale each of the coefficients by G:

$$y(t) = \sum_{k=-N}^{N} (Ga_k) e^{j2\pi f_k t}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Suppose we have a signal

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

Suppose we add a constant, C:

$$y(t) = x(t) + C$$

That just means that we add that constant to  $a_0$ :

$$y(t) = (a_0 + C) + \sum_{k \neq 0} a_k e^{j2\pi f_k t}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

 Beating
 Spectrum
 Properties
 Spectrum of Beat Tones
 Summary

 0000000
 0000
 00000
 0000
 0000

## Property #3: Adding two signals

Suppose we have two signals:

$$x(t) = \sum_{n=-N}^{N} a'_n e^{j2\pi f'_n t}$$
$$y(t) = \sum_{m=-M}^{M} a''_m e^{j2\pi f''_m t}$$

and we add them together:

$$z(t) = x(t) + y(t) = \sum_{k} a_k e^{j2\pi f_k t}$$

where, if a frequency  $f_k$  comes from both x(t) and y(t), then we have to do phasor addition:

If 
$$f_k = f'_n = f''_m$$
 then  $a_k = a'_n + a''_m$ 



Suppose we have a signal

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

and we want to time shift it by au seconds:

$$y(t) = x(t-\tau)$$

Time shift corresponds to a **phase shift** of each spectral component:

$$y(t) = \sum_{k=-N}^{N} \left(a_k e^{-j2\pi f_k \tau}\right) e^{j2\pi f_k t}$$

Suppose we have a signal

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

and we want to shift it in frequency by some constant overall shift, F:

$$y(t) = \sum_{k=-N}^{N} a_k e^{j2\pi(f_k+F)t}$$

Frequency shift corresponds to amplitude modulation (multiplying it by a complex exponential at the carrier frequency F):

$$y(t) = x(t)e^{j2\pi Ft}$$

 Beating
 Spectrum
 Properties
 Spectrum of Beat Tones
 Summary of

 Property
 #6: Differentiation

Suppose we have a signal

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

and we want to differentiate it:

$$y(t) \propto rac{dx}{dt}$$

Differentiation corresponds to scaling each spectral coefficient by  $j2\pi f_k$ :

$$y(t) = \sum_{k=-N}^{N} (j2\pi f_k a_k) e^{j2\pi f_k t}$$

| Beating  | Spectrum | Properties | Spectrum of Beat Tones | Summary |
|----------|----------|------------|------------------------|---------|
| 00000000 | 00000    | 00000000   | ●○○○○                  | 00      |
| Outline  |          |            |                        |         |





Operation of a Spectrum

4 Spectrum of Beat Tones

## **5** Summary

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

 Beating
 Spectrum
 Properties
 Spectrum of Beat Tones
 Summary

 Occorrelation
 Summary
 Summary
 Summary
 Summary

 Representing beat tones with no trig identities
 Summary
 Summary

One nice thing about the spectral representation is that you can analyze beat tones without remembering any trig identities. First, write out the spectrum:

$$2\cos(2\pi f_1 t) + 2\cos(2\pi f_2 t) = e^{-j2\pi f_2 t} + e^{-j2\pi f_1 t} + e^{j2\pi f_1 t} + e^{j2\pi f_2 t}$$



Second, write the spectrum in terms of the carrier frequency  $f_c = \frac{f_2 + f_1}{2}$  and the beat frequency  $f_b = \frac{f_2 - f_1}{2}$ :

$$e^{-j2\pi f_2 t} + e^{-j2\pi f_1 t} + e^{j2\pi f_1 t} + e^{j2\pi f_2 t} = e^{-j2\pi (f_c + b_b)t} + e^{-j2\pi (f_c - f_b)t} + e^{j2\pi (f_c - f_b)t}$$



Third, remember that xy + xz = x(y + z), so

$$e^{-j2\pi(f_c+b_b)t} + e^{-j2\pi(f_c-f_b)t} + e^{j2\pi(f_c-f_b)t} + e^{j2\pi(f_c+f_b)t} = \left(e^{-j2\pi f_bt} + e^{j2\pi f_bt}\right)$$

 Beating
 Spectrum
 Properties
 Spectrum of Beat Tones
 Summary

 00000000
 00000
 00000000
 00000
 00000000

 Representing beat tones with no trig identities

Solving for beat tones using the spectrum took longer than using a trig identity, but it has the key advantage that we didn't have to remember any trig identity. The result is the same, but we can do it even when we don't have an internet connection.

 $2\cos(2\pi f_1 t) + 2\cos(2\pi f_2 t) = 4\cos(2\pi f_b t)\cos(2\pi f_c t)$ 

| Beating  | Spectrum | Properties | Spectrum of Beat Tones | Summary |
|----------|----------|------------|------------------------|---------|
| 00000000 | 00000    | 00000000   | 00000                  | ●○      |
| Outline  |          |            |                        |         |





- Properties of a Spectrum
- 4 Spectrum of Beat Tones





| Beating | Spectrum | Properties | Spectrum of Beat Tones | Summary |
|---------|----------|------------|------------------------|---------|
| 0000000 | 00000    | 00000000   |                        | ○●      |
| Summary |          |            |                        |         |

• **Spectrum:** The spectrum of any sum of cosines is the set of complex-valued spectral coefficients, *a<sub>k</sub>*, matched with the frequencies *f<sub>k</sub>*, such that

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

• **Properties of the spectrum:** signal processing operations that can be done directly in the spectrum, without first recomputing the waveform, include scaling, adding, time shift, frequency shift, and differentiation.