[Cosines](#page-2-0) [Beating](#page-15-0) [Phasors](#page-21-0) [Summary](#page-36-0)

KORK ERKER ADA ADA KORA

Lecture 2: Sines, Cosines and Complex **Exponentials**

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis

[Sines and Cosines](#page-2-0)

[Sines and Cosines](#page-2-0)

[Beat Tones](#page-15-0)

Sine and Cosine functions were invented to describe the sides of a right triangle:

$$
\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}
$$
\n
$$
\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}
$$
\n
$$
\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}}
$$

KO K K Ø K K E K K E K V K K K K K K K K K K

[Cosines](#page-2-0) [Beating](#page-15-0) [Phasors](#page-21-0) [Summary](#page-36-0)

SOHCAHTOA

By Cmglee, CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:Trigonometric_function_triangle_mnemonic.svg

Imagine an ant walking counter-clockwise around a circle of radius A. Suppose the ant walks all the way around the circle once every T seconds.

• The ant's horizontal position at time t , $x(t)$, is given by

$$
x(t) = A \cos\left(\frac{2\pi t}{T}\right)
$$

• The ant's vertical position, $y(t)$, is given by

$$
y(t) = A \sin\left(\frac{2\pi t}{T}\right)
$$

KELK KØLK VELKEN EL 1990

Sines, Cosines, and Circles

by Gonfer, CC-SA 3.0, <https://commons.wikimedia.org/wiki/File:Unfasor.gif>

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

By Inductiveload, public domain image 2008,

https://commons.wikimedia.org/wiki/File:Sine_and_Cosine.svg

Period and Frequency

The period of a cosine, T , is the time required for one complete cycle. The frequency, $f = 1/T$, is the number of cycles per second. This picture shows

$$
y(t) = A \sin\left(\frac{2\pi t}{T}\right) = A \sin\left(2\pi f t\right)
$$

In music or audiometry, a "pure tone" at frequency f is an acoustic signal, $p(t)$, given by

$$
p(t) = A\cos(2\pi ft + \theta)
$$

for any amplitude A and phase θ .

[Pure Tone Demo](https://en.wikipedia.org/wiki/Sine_wave)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Remember the ant on the circle. The circle has a radius of A (say, A centimeters).

When the ant has walked a distance of A centimeters around the outside of the circle, then it has moved to an angle of 1 radian.

KORKARYKERKER POLO

When the ant walks all the way around the circle, it has walked $2\pi A$ centimeters, which is 2π radians.

Phase, Distance, and Time

National Institute of Standards and Technology, public domain image 2010 [https://www.nist.gov/pml/](https://www.nist.gov/pml/time-and-frequency-division/popular-links/time-frequency-z/time-and-frequency-z-p)

[time-and-frequency-division/popular-links/time-frequency-z/time-and-frequency-z-p](https://www.nist.gov/pml/time-and-frequency-division/popular-links/time-frequency-z/time-and-frequency-z-p)

KORK ERKER ADA ADA KORA

Where did the ant start?

If the ant starts at an angle of θ **, and continues walking** counter-clockwise at f cycles/second, then

$$
x(t) = A\cos\left(\frac{2\pi t}{T} + \theta\right)
$$

• This is exactly the same as if it started walking from phase 0 at time $-\tau=-\frac{\theta}{2\pi}$ $rac{\theta}{2\pi f}$:

$$
x(t) = A\cos\left(\frac{2\pi}{T}\left(t+\tau\right)\right), \quad \tau = \frac{T\theta}{2\pi} = \frac{\theta}{2\pi f}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Where did the ant start?

イロトメ 倒 トメ 差 トメ 差 トー ミー 299

 -2 6 0 2 \triangleright \rightarrow \equiv \rightarrow 重 OQ \sim \sim

[Sines and Cosines](#page-2-0)

When two pure tones at similar frequencies are added together, you hear the two tones "beating" against each other.

[Beat tones demo](https://en.wikipedia.org/wiki/Beat_(acoustics))

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[Cosines](#page-2-0) [Beating](#page-15-0) [Phasors](#page-21-0) [Summary](#page-36-0) 0000000000000 000000000000000 OO Beat tones and Trigonometric identities

Beat tones can be explained using this trigonometric identity:

$$
\cos(a)\cos(b) = \frac{1}{2}\cos(a+b) + \frac{1}{2}\cos(a-b)
$$

Let's do the following variable substitution:

$$
a + b = 2\pi f_1 t
$$

$$
a - b = 2\pi f_2 t
$$

$$
a = 2\pi f_{ave} t
$$

$$
b = 2\pi f_{beat} t
$$

KORKARYKERKER POLO

where $f_{\sf ave}=\frac{f_1+f_2}{2}$, and $f_{\sf beat}=\frac{f_1-f_2}{2}$.

Re-writing the trigonometric identity, we get:

$$
\frac{1}{2}\cos(2\pi f_1 t) + \frac{1}{2}\cos(2\pi f_2 t) = \cos(2\pi f_{beat} t)\cos(2\pi f_{ave} t)
$$

So when we play two tones together, $f_1 = 110$ Hz and $f_2 = 104$ Hz, it sounds like we're playing a single tone at $f_{ave} = 107$ Hz, multiplied by a beat frequency $f_{\text{beat}} = 3$ (double beats)/second.

KORKARYKERKER POLO

Beat tones

by Adjwilley, CC-SA 3.0, <https://commons.wikimedia.org/wiki/File:WaveInterference.gif>

KO K K Ø K K E K K E K V K K K K K K K K K K

What happens if we add together, say, three tones?

$$
\cos(2\pi 107t) + \cos(2\pi 110t) + \cos(2\pi 104t) = ??
$$

For this, and other more complicated operations, it is much, much easier to work with complex exponentials, instead of cosines.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Sines and Cosines](#page-2-0)

[Beat Tones](#page-15-0)

Euler asked: "What is $e^{j\theta}$?" He used the exponential summation:

$$
e^x = 1 + x + \frac{1}{2}x^2 + \dots + \frac{1}{n!}x^n + \dots
$$

to show that

$$
e^{j\theta} = \cos\theta + j\sin\theta
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

By Gunther, CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Euler%27s_formula.svg

The polar form of a complex number is $z = re^{j\theta}$,

$$
z = re^{j\theta} = r\cos\theta + jr\sin\theta
$$

The complex conjugate is defined to be the mirror image of z, mirrored through the real axis:

$$
z^* = re^{-j\theta} = r\cos\theta - jr\sin\theta
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

By Oleg Alexandrov, CC-SA 3.0,

https://commons.wikimedia.org/wiki/File:Complex_conjugate_picture.svg

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Real part of a complex number

If we know z and z^* ,

$$
z = re^{j\theta} = r \cos \theta + jr \sin \theta
$$

$$
z^* = re^{-j\theta} = r \cos \theta - jr \sin \theta
$$

Then we can get the real part of z back again as

$$
\Re\left\{z\right\}=\frac{1}{2}\left(z+z^*\right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Suppose we want to add together a lot of phase shifted, scaled cosines, all at the same frequency:

$$
x(t) = A\cos(2\pi ft + \theta) + B\cos(2\pi ft + \phi) + C\cos(2\pi ft + \psi)
$$

What is $x(t)$?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

We can simplify this problem by finding the **phasor** representation of the tones (I'll give you a formal definition of "phasor" in a few slides):

$$
A\cos\left(2\pi ft + \theta\right) = \Re\left\{Ae^{j\theta}e^{j2\pi ft}\right\}
$$

$$
B\cos\left(2\pi ft + \phi\right) = \Re\left\{Be^{j\phi}e^{j2\pi ft}\right\}
$$

$$
C\cos\left(2\pi ft + \psi\right) = \Re\left\{Ce^{j\theta}e^{j2\psi ft}\right\}
$$

So

$$
x(t) = \Re \left\{ \left(Ae^{j\theta} + Be^{j\phi} + Ce^{j\psi} \right) e^{j2\pi ft} \right\}
$$

KORK ERKER ADAM ADA

Why complex exponentials are better than cosines

We add complex numbers by (1) adding their real parts, and (2) adding their imaginary parts:

$$
Ae^{j\theta} + Be^{j\phi} + Ce^{j\psi} = (A\cos\theta + B\cos\phi + C\cos\psi) + j(A\sin\theta + B\sin\phi + C\sin\psi)
$$

By Booyabazooka, public domain image 2009,

https://commons.wikimedia.org/wiki/File:Vector_Addition.svg

KORKARYKERKER POLO

Adding phasors

by Gonfer, CC-SA 3.0, <https://commons.wikimedia.org/wiki/File:Sumafasores.gif>

Suppose we want to add together a lot of phase shifted, scaled cosines, all at the same frequency:

$$
x(t) = A\cos(2\pi ft + \theta) + B\cos(2\pi ft + \phi) + C\cos(2\pi ft + \psi)
$$

Here's the fastest way to do that:

- \bullet Convert all the tones to their phasors, $a=A\textrm{e}^{j\theta},~b=B\textrm{e}^{j\phi},$ and $c = Ce^{j\psi}$.
- 2 Add the phasors: $x = a + b + c$.
- **3** Take the real part:

$$
x(t) = \Re\left\{xe^{j2\pi ft}\right\}
$$

KORKARYKERKER POLO

Try the quiz! Go to the course webpage, and click on today's date to go to today's quiz.

Kロトメ部トメミトメミト ミニのQC

BTW, What is a "phaser"?

By McFadden, Strauss Eddy & Irwin for Desilu Productions, public domain image 1966,

https://commons.wikimedia.org/wiki/File:William_Shatner_Sally_Kellerman_Star_Trek_1966.JPG

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Wikipedia](https://en.wikipedia.org/wiki/Phasor) has the following definition, which is the best I've ever seen:

- The function $Ae^{j(\omega t + \theta)}$ is called the analytic representation of $A\cos(\omega t + \theta)$.
- It is sometimes convenient to refer to the entire function as a phasor. But the term phasor usually implies just the static vector $Ae^{j\theta}$.

In other words, the "phasor" can mean either $Ae^{j(\omega t+\theta)}$ or just $Ae^{j\theta}$. If you're asked for the phasor representation of some cosine, either answer is correct.

KELK KØLK VELKEN EL 1990

Here are some phasor demos, provided with the textbook.

- **[One rotating phasor demo](http://dspfirst.gatech.edu/chapters/03spect/demos/phasors/index.html)**: This shows how the cosine, $\cos(2\pi ft+\theta)$, is the real part of the phasor $e^{j(2\pi ft+\theta)}$.
- **[Positive and Negative Frequency Phasors](http://dspfirst.gatech.edu/chapters/03spect/demos/phasors/index.html):** This shows how you can get the real part of a phasor by adding its complex conjugate (its "negative frequency phasor"):

$$
\cos(2\pi ft + \theta) = \frac{1}{2}e^{j(2\pi ft + \theta)} + \frac{1}{2}e^{-j(2\pi ft + \theta)}
$$

KORKARYKERKER POLO

[Sines and Cosines](#page-2-0)

[Beat Tones](#page-15-0)

• Cosines and Sines:

$$
A\cos\left(\frac{2\pi t}{\mathcal{T}}+\theta\right)=A\cos\left(2\pi f(t+\tau)\right)
$$

• Beat Tones:

$$
\cos(a)\cos(b) = \frac{1}{2}\cos(a+b) + \frac{1}{2}\cos(a-b)
$$

- Phasors:
	- $\, {\bf 1}\,$ Convert all the tones to their phasors, $a=A{\rm e}^{j\theta},\, b=B{\rm e}^{j\phi},$ and $c = Ce^{j\psi}$.
	- 2 Add the phasors: $x = a + b + c$.
	- **3** Take the real part:

$$
x(t) = \Re\left\{xe^{j2\pi ft}\right\}
$$

KORK EXTERNE PROVIDE