UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Department of Electrical and Computer Engineering

ECE 401 SIGNAL AND IMAGE ANALYAIS Fall 2023

EXAM 1

Monday, September 25, 2023

- This is a CLOSED BOOK exam.
- You are permitted one sheet of handwritten notes, 8.5x11.
- Calculators and computers are not permitted.
- Do not simplify explicit numerical expressions.
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will appear on Gradescope at exactly 1:00pm; you will need to photograph and upload your answers by exactly 2:00pm.
- There will be a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

NT			
Name:			

NetID: _____

Phasors

$$A\cos(2\pi ft + \theta) = \Re \left\{ Ae^{j\theta} e^{j2\pi ft} \right\} = \frac{1}{2}e^{-j\theta}e^{-j2\pi ft} + \frac{1}{2}e^{j\theta}e^{j2\pi ft}$$

Spectrum

Scaling:
$$y(t) = Gx(t) = \sum_{k=-N}^{N} (Ga_k) e^{j2\pi f_k t}$$

Add a Constant: $y(t) = x(t) + C = (a_0 + C) + \sum_{k \neq 0} a_k e^{j2\pi f_k t}$
Add Signals: If $f_k = f'_n = f''_m$ then $a_k = a'_n + a''_m$
Time Shift: $y(t) = x(t - \tau) = \sum_{k=-N}^{N} (a_k e^{-j2\pi f_k \tau}) e^{j2\pi f_k t}$
Frequency Shift: $y(t) = x(t)e^{j2\pi Ft} = \sum_{k=-N}^{N} a_k e^{j2\pi (f_k + F)t}$
Differentiation: $y(t) = \frac{dx}{dt} = \sum_{k=-N}^{N} (j2\pi f_k a_k) e^{j2\pi f_k t}$

Fourier Series

Analysis:
$$X_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi kt/T_0} dt$$

Synthesis: $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$

Sampling and Interpolation:

$$x[n] = x \left(t = \frac{n}{F_s} \right)$$

$$f_a = \min \left(f \mod F_s, -f \mod F_s \right)$$

$$z_a = \begin{cases} z & f \mod F_s < -f \mod F_s \\ z^* & f \mod F_s > -f \mod F_s \end{cases}$$

$$y(t) = \sum_{n=-\infty}^{\infty} y[n]p(t - nT_s)$$

1. (25 points) Suppose that

$$x(t) = 5\cos\left(3\pi t + \frac{\pi}{4}\right) + 5\cos\left(3\pi t - \frac{\pi}{4}\right) = \Re\left\{Me^{j(2\pi f t + \theta)}\right\},$$

where $\Re\{\cdot\}$ means "real part." Find $M,\,f,\,{\rm and}\;\theta.$

2. (25 points) In a switching power supply, power is delivered to a circuit in the form of a periodic square wave, x(t), with a period of T_0 seconds, and with an adjustable parameter R (0 < R < 1) that is called the "duty cycle:"

$$x(t) = \begin{cases} 1 & 0 < t < RT_0 \\ 0 & RT_0 < t < T_0 \end{cases}$$

In terms of R, what are the Fourier series coefficients X_k ? Calculate X_k for all values of k, including k = 0. There should be no unresolved integrals in your answer, and you should find that it is possible to express the answer without the variables t, T_0 , or F_0 ; other simplifications are not necessary.

3. (25 points) The voltage across a cardioid microphone is

$$m(t) = ap(t) + (1-a)\frac{dp}{dt},$$

where p(t) is the air pressure, as a function of time, at the microphone's location, and a is a coefficient, 0 < a < 1, that depends on the direction from which the wave arrives. The microphone voltage is usually enhanced by a pre-amplifier with a gain of G, then transmitted on a wire until it reaches the A/D converter; the voltage at input to the A/D converter is delayed by a short delay of τ seconds, so

$$v(t) = Gm(t - \tau)$$

Suppose that the signal being recorded is the voice of a tenor, singing the A above middle C, thus

$$p(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kF_0 t}$$
$$m(t) = \sum_{k=-\infty}^{\infty} M_k e^{j2\pi kF_0 t}$$
$$v(t) = \sum_{k=-\infty}^{\infty} V_k e^{j2\pi kF_0 t}$$

Express V_k in terms of X_k , F_0 , k, a, G, τ , and k.

4. (25 points) A signal x(t) is sampled at 16,000 samples/second, then played back through an ideal D/A, thus:

$$x(t) = 14\cos\left(2\pi 6000t + \frac{3\pi}{4}\right) + 2\cos\left(2\pi 12,000t - \frac{\pi}{4}\right)$$
$$x[n] = x\left(t = \frac{n}{16,000}\right)$$
$$y(t) = \sum_{n = -\infty}^{\infty} x[n]\mathrm{sinc}\left(16,000\pi t - \pi n\right)$$

where the sinc function is defined as

$$\operatorname{sinc}(x) = \begin{cases} 1 & x = 0\\ \frac{\sin(x)}{x} & \text{otherwise} \end{cases}$$

Find y(t).

THIS PAGE IS SCRATCH PAPER.