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© Review: Z Transform



Summary: Z Transform

o A difference equation is an equation in terms of time-shifted
copies of x[n] and/or y[n].

@ We can find the frequency response H(w) = Y (w)/X(w) by
taking the DTFT of each term of the difference equation. This
will result in a lot of terms of the form €/“™ for various ng.

@ We have less to write if we use a new frequency variable,
z = &/, This leads us to the Z transform:

o0

X(z)= ) x[n]z""

n—=—oo



Zeros of the Transfer Function

e The transfer function, H(z), is a polynomial in z.
@ The zeros of the transfer function are usually complex
numbers, z.

e The frequency response, H(w) = H(z)|,—qjw, has a dip
whenever w equals the phase of any of the zeros, w = Zz.



Autoregressive
°

Outline

@ Autoregressive Difference Equations



Autoregressive
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Autoregressive Difference Equations

An autoregressive filter is one in which the output, y[n], depends
on past values of itself (auto=self, regress=go back). For
example,

y[n] = x[n] + 0.3x[n — 1] + 0.8y[n — 1]



Autoregressive
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Causal and Anti-Causal Filters

o If the outputs of a filter depend only on current and past
values of the input, then the filter is said to be causal. An
example is

y[n] = x[n] + 0.3x[n — 1] 4+ 0.8y[n — 1]

@ If the outputs depend only on current and future values of
the input, the filter is said to be anti-causal, for example

y[n] = x[n] + 0.3x[n+ 1] + 0.8y[n + 1]

@ If the filter is neither causal nor anti-causal, we say it's
“non-causal.”

@ Feedforward non-causal filters are easy to analyze, but when
analyzing feedback, we will stick to causal filters.
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Autoregressive Difference Equations

We can find the transfer function by taking the Z transform of
each term in the equation:

y[n] = x[n] + 0.3x[n — 1] 4+ 0.8y[n — 1]
Y(z) = X(2) +0.3z71X(2) + 0.8z Y(2)
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Transfer Function

In order to find the transfer function, we need to solve for

H(z) = x3.

Y(z) = X(z) + 0.3z 1X(2) + 0.8271Y(2)
(1-08z71) Y(z) = X(2)(1 +0.3z71)
_Y(z) 1403z
H2) = X)) = 1=08 1
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Frequency Response

As before, we can get the frequency response by just plugging in
z = e/, Some autoregressive filters are unstable,! but if the filter
is stable, then this works:

14+0.3e v

H(w) = H(z)| =i = 1_-08eJw

1“Unstable” means that the output can be infinite, even with a finite input.
More about this later in the lecture.
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Frequency Response

So, already we know how to compute the frequency response of an
autoregressive filter. Here it is, plotted using
np.abs((1+0.3*np.exp(-1j*omega))/(1-0.8*np.exp(-1j*omega))

[H(w)| = (1 + 0.3e/)/(1 — 0.8e 1)

T T
0 w4 w2 3/4 n
Frequency (w)
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e Finite vs. Infinite Impulse Response



FIR and IIR
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Impulse Response of an Autoregressive Filter

One way to find the impulse response of an autoregressive filter is
the same as for any other filter: feed in an impulse, x[n] = §[n],
and what comes out is the impulse response, y[n] = h[n].

h[n] = 6[n] +0.36[n — 1] + 0.8h[n — 1]

hln]=0, n<0

h[0] =46[0] =1

h[1] = 0+ 0.35[0] + 0.8h[0] = 1.1
h[2] = 0+ 0+ 0.8h[1] = 0.88

h[3] = 0+ 0 + 0.8h[2] = 0.704

h[n] = 1.1(0.8)" ! ifn>1
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FIR vs. IR Filters

@ An autoregressive filter is also known as an infinite impulse
response (lIR) filter, because h[n] is infinitely long (never
ends).

e A difference equation with only feedforward terms (like we
saw in the last lecture) is called a finite impulse response
(FIR) filter, because h[n] has finite length.



General form of an FIR filter
M
yln] =" bix[n— K]
k=0

This filter has an impulse response (h[n]) that is M + 1 samples
long.
@ The by's are called feedforward coefficients, because they
feed x[n] forward into y[n].

General form of an |IR filter

N M
D ayln— =) bix[n—K
=0 k=0

@ The a;'s are caled feedback coefficients, because they feed
y[n] back into itself.
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oooe

General form of an IIR filter

N M
D ayln— =) bix[n—K
=0 k=0

Example:

y[n] = x[n] + 0.3x[n — 1] + 0.8y[n — 1]

bo =
b1 =0.3
ao:].
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@ Impulse Response and Transfer Function of a First-Order
Autoregressive Filter
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First-Order Feedback-Only Filter

Let's find the general form of h[n], for the simplest possible
autoregressive filter: a filter with one feedback term, and no

feedforward terms, like this:
y[n] = x[n] + ay[n — 1],

where a is any constant (positive, negative, real, or complex).
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Impulse Response of a First-Order Filter

We can find the impulse response by putting in x[n] = d[n], and
getting out y[n] = h[n]:

h[n] = d[n] + ah[n — 1].

Recursive computation gives

0] =1
h[l] = a
h[2] = a°

h[n] = a"u[n|
where we use the notation u[n] to mean the “unit step function,”

u[n]—{l n>0

0 n<©O
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Impulse Response of Stable First-Order Filters

The coefficient, a, can be positive, negative, or even complex. If a
is complex, then h[n] is also complex-valued.

h[n] = (0.9)"uln]

1

IIITTTTTTTTTT???ooo-;;;;.;...

=5 0 5 10 15 20 25 30

h[n]=(-0.9)"uln]

-5 0 5 10 15 20 25 30

h[n] = (0.9e™3)"y[n] (Imaginary part dashed)
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Impulse Response of Unstable First-Order Filters

If |a] > 1, then the impulse response grows exponentially. If
|a| = 1, then the impulse response never dies away. In either case,
we say the filter is “unstable.”

h[nl=(1.1)"uln]

10 4

0M.."T""T”TTTTT”””

10 15 20 25 30

hln] = (=1.1)"uln]
e eo st ?? T
0] eesestetututyte st s T 5 5 1 | 'l

T
=5 0 5 10 15 20 25 30

hln] = (1.1e3)"y[n] (Imaginary part dashed)
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Instability

@ A stable filter is one that always generates finite outputs
(ly[n]| finite) for every possible finite input (|x[n]| finite).

@ An unstable filter is one that, at least sometimes, generates
infinite outputs, even if the input is finite.

o A first-order IIR filter is stable if and only if |a| < 1.
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Transfer Function of a First-Order Filter

We can find the transfer function by taking the Z-transform of
each term in this equation equation:

ylnl = x[n] + ay[n — 1],
Y(z) = X(z) +az 1Y (2),

which we can solve to get
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Frequency Response of a First-Order Filter

If the filter is stable (|a] < 1), then we can find the frequency
response by plugging in z = &/“:

H(w) = H(z)|j—eiv = iff [a| < 1

1— ae—Jw

This formula works if and only if |a| < 1.
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Frequency Response of a First-Order Filter

1

Hw) = ——— ifla| <1
1—ae v
hAlnl = (0.9)"uln] H(w) = 1/(1 - (0.9)e %)
1 10
[l N
ol 117290900000 000a
: T : : — . . . : . . . .
-5 0 5 10 15 20 25 30 0.0 05 L0 15 2.0 2.5 3.0
hLn] = (-0.9)"uln] H{w) = 1/(1 - (-0.9)e7¥)
1q 10 4
0 ....I_l_Ll_rTH_'TLrL‘_Lrl..W"M 5
- 0 5 10 5 20 5 0 00 05 10 15 20 25 30
A[n] = (0.9e/™3)"un] (Imaginary part dashed) H(w) = 1/(1 — (0.9e/5)e—/w)
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Transfer Function <+ Impulse Response

For FIR filters, we say that h[n] <> H(z) are a Z-transform pair.
Let's assume that the same thing is true for IIR filters, and see if it
works.

H(z)= Y hinjz"

n=—o0
o)

_ 2 :anz—n
n=0

This is a standard geometric series, with a ratio of az~1. As long
as |a| < 1, we can use the formula for an infinite-length geometric

series, which is: .

T l-az U
So we confirm that h[n] <> H(z) for both FIR and IIR filters, as
long as |a| < 1.

H(z)
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© Finding the Poles and Zeros of H(z)



Poles and Zeros
©00000000

First-Order Filter

Now, let's find the transfer function of a general first-order filter,
including BOTH feedforward and feedback delays:

y[n] = x[n] + bx[n — 1] 4+ ay[n — 1],

where we'll assume that |a| < 1, so the filter is stable.



Poles and Zeros
0®0000000

Transfer Function of a First-Order Filter

We can find the transfer function by taking the Z-transform of
each term in this equation:

yln] = x[n] + bx[n — 1] + ay[n — 1],

Y(z) = X(2) + bz 1X(2) + az 1Y (z),

which we can solve to get

Y(z) 1+bz7t

H(z) = X(z) 1—azl
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Treating H(z) as a Ratio of Two Polynomials

Notice that H(z) is the ratio of two polynomials:

_l+bzt z+b

H(z)

C1—azl z-2

e z = —b is called the zero of H(z), meaning that H(—b) = 0.
@ z = ais called the pole of H(z), meaning that H(a) = oo



Poles and Zeros
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The Pole and Zero of H(z)

@ The pole, z = a, and zero, z = —b, are the values of z for
which H(z) = co and H(z) = 0, respectively.

o But what does that mean? We know that for z = e/, H(z) is
just the frequency response:

H(w) = H(2)| ;e

but the pole and zero do not normally have unit magnitude.
e What it means is that:

o When w = Z(—b), then |[H(w)| is as close to a zero as it can
possibly get, so at that that frequency, |H(w)]| is as low as it
can get.

o When w = Za, then |H(w)| is as close to a pole as it can
possibly get, so at that that frequency, |H(w)| is as high as it
can get.
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x[n]= cos(0.00mn)

1
2.0 imag(z)
)
15
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-10 Real part of y[n] = h[n] *x[n], which is 0.73c0s(0.00mn + — 0.28m)
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Vectors in the Complex Plane

Suppose we write |H(z)| like this:

|z + b|
H(2)| =
HE) =
Now let's evaluate at z = &/%:
e + b
Hw)| = -+ 2
7 — 3]

What we've discovered is that |H(w)] is small when the vector
distance |&/¥ + b| is small, but LARGE when the vector distance
|e/“ — a| is small.
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Why This is Useful

Now we have another way of thinking about frequency response.
@ Instead of just LPF, HPF, or BPF, we can design a filter to
have zeros at particular frequencies, Z(—b), AND to have
poles at particular frequencies, Za,
o The magnitude |H(w)| is [e/* + b|/|e/* — al.
@ Using this trick, we can design filters that have much more

subtle frequency responses than just an ideal LPF, BPF, or
HPF.
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Summary: Autoregressive Filter

@ An autoregressive filter is a filter whose current output,
y[n], depends on past values of the output.

@ An autoregressive filter is also called infinite impulse
response (IIR), because h[n] has infinite length.

@ A filter with only feedforward coefficients, and no feedback
coefficients, is called finite impulse response (FIR), because
h[n] has finite length (its length is just the number of
feedforward terms in the difference equation).

@ The first-order, feedback-only autoregressive filter has this
impulse response and transfer function:

1

h[n] = a"u[n] + H(z) = PR
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Summary: Poles and Zeros

A first-order autoregressive filter,
yln] = x[n] + bx[n — 1] + ay[n — 1],
has the impulse response and transfer function

14 bzt
h[n] = a"u[n] + ba" Yu[n — 1] ¢5 H(z) = %
— az

where a is called the pole of the filter, and —b is called its zero.
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