Review	Windowed	Non-Windowed	Windowing	Summary	Example
/	/			/	

Lecture 26: DTFT of a Sinusoid

Mark Hasegawa-Johnson These slides are in the public domain

ECE 401: Signal and Image Analysis

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Review	Windowed	Non-Windowed	Windowing	Summary	Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 2 DTFT of a Windowed Sinusoid
- 3 DTFT of a Non-Windowed Sinusoid
- Windowing in Time = Convolution in Frequency
- 5 Summary
- 6 Written Example

Review	Windowed	Non-Windowed	Windowing	Summary	Example
●○○○	0000		000000	00	00
Outline					

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- 1 Review: DFT, DTFT, and Fourier Series
- 2 DTFT of a Windowed Sinusoid
- 3 DTFT of a Non-Windowed Sinusoid
- Windowing in Time = Convolution in Frequency
- 5 Summary
- 6 Written Example

Magnitude-summable signals have a DTFT:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}, \quad \Leftrightarrow \quad x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n}d\omega$$

Periodic signals have a Fourier series:

$$X_k = \frac{1}{N} \sum_{n=1}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}, \quad \Leftrightarrow \quad x[n] = \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi kn}{N}}$$

Finite-length or periodic signals have a DFT:

$$X[k] = \sum_{n=1}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}, \quad \Leftrightarrow \quad x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi kn}{N}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

To find the DFT of a sinusoid, we use the frequency-shift property of the DFT:

$$x[n] = \cos(\omega_0 n) w[n] = \left(\frac{1}{2}w[n]e^{j\omega_0 n} + \frac{1}{2}w[n]e^{-j\omega_0 n}\right)$$

$$\leftrightarrow$$

$$X[k] = \frac{1}{2}W\left(\frac{2\pi k}{N} - \omega_0\right) + \frac{1}{2}W\left(\frac{2\pi k}{N} + \omega_0\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

where $W(\omega)$ is the DTFT of the window.

Review	Windowed	Non-Windowed	Windowing	Summary	Example
○00●	0000		000000	00	00
Today's	Questions				

Today's questions are:

Can we use the frequency-shift property to find the DTFT of a windowed sinusoid?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Can we use something like that to find the DTFT of a non-windowed, infinite length sinusoid?

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	●○○○		000000	00	00
Outline					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1 Review: DFT, DTFT, and Fourier Series
- 2 DTFT of a Windowed Sinusoid
- 3 DTFT of a Non-Windowed Sinusoid
- Windowing in Time = Convolution in Frequency
- 5 Summary
- 6 Written Example

First, let's find the DTFT of a windowed sinusoid. This is easy; it's the same as the DFT. Since

$$x[n] = \cos(\omega_0 n) w[n] = \left(\frac{1}{2} w[n] e^{j\omega_0 n} + \frac{1}{2} w[n] e^{-j\omega_0 n}\right)$$

We can just use the frequency-shift property of the DTFT to get

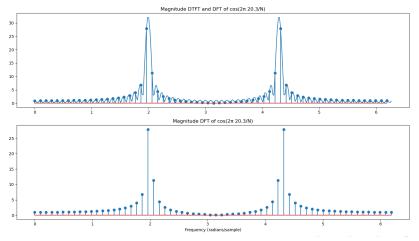
$$X(\omega) = \frac{1}{2}W(\omega - \omega_0) + \frac{1}{2}W(\omega + \omega_0)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	○O●O		000000	00	00
DFT of	a Cosine				

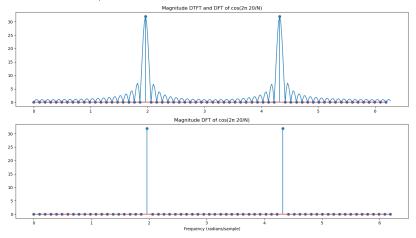
Here are the DTFT and DFT of

$$x[n] = \cos\left(\frac{2\pi 20.3}{N}n\right) w[n]$$



200

Here are the DTFT and DFT of a cosine at a frequency that's a multiple of $2\pi k/N$.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000	●○○○○○○○○○	000000	00	00
Outline					

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 1 Review: DFT, DTFT, and Fourier Series
- 2 DTFT of a Windowed Sinusoid
- 3 DTFT of a Non-Windowed Sinusoid
- Windowing in Time = Convolution in Frequency
- 5 Summary
- 6 Written Example

- How about x[n] = cos(ω₀n), with no windows? Does it have a DTFT?
- It's not magnitude-summable!

$$\sum_{n=-\infty}^{\infty} |x[n]| = \infty$$

Therefore, there's no guarantee that it has a valid DTFT.

• In fact, we will need to make up some new math in order to find the DTFT of this signal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000		000000	00	00
The D	irac Delta	Function			

The Dirac delta function, $\delta(\omega)$, is defined as:

- $\delta(\omega) = 0$ for all ω other than $\omega = 0$.
- $\delta(0) = \infty$
- The integral of δ(ω), from any negative ω to any positive ω, is exactly 1:

 $\int_{-\epsilon}^{\epsilon} \delta(\omega) d\omega = 1$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Review	Windowed	Non-Windowed	Windowing	Summary	Example
		000000000			

It's useful to imagine the Dirac delta function as a tall, thin function — a Gaussian, a rectangle, or whatever — with zero width, infinite height, and an area of exactly 1.

CC-SA 4.0,

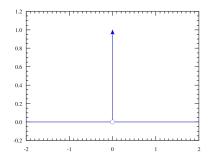
https://commons.wikimedia.org/wiki/File:

Dirac_function_approximation.gif

(日) (四) (日) (日) (日)

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000	○○○○●○○○○○○	000000	00	00

We usually draw it like this. The arrow has zero width, infinite height, and an area of exactly 1.0.



https://commons.wikimedia.org/wiki/File:

Dirac_distribution_PDF.svg

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000		000000	00	00
Integra	ating a Dira	ac Delta			

The key use of a Dirac delta is that, when we multiply it by any function and integrate,

- All the values of that function at $\omega \neq 0$ are multiplied by $\delta(\omega) = 0$
- The value at ω = 0 is multiplied by +∞, in such a way that the integral is exactly:

$$\int_{-\pi}^{\pi} f(\omega) \delta(\omega) d\omega = f(0)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The delta function can also be shifted, to some frequency ω_0 . This is written as $\delta(\omega - \omega_0)$.

- All the values of that function at $\omega\neq\omega_0$ are multiplied by $\delta(\omega-\omega_0)=0$
- The value at $\omega = \omega_0$ is multiplied by $+\infty$, in such a way that the integral is exactly:

$$\int_{-\pi}^{\pi} f(\omega)\delta(\omega-\omega_0)d\omega = f(\omega_0)$$

Review Windowed Non-Windowed Windowing Summary Example of a Shifted Dirac Delta

Thus, for example,

$$rac{1}{2\pi}\int_{-\pi}^{\pi}\delta(\omega-\omega_0)e^{j\omega n}d\omega=rac{1}{2\pi}e^{j\omega_0 n}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In other words, the inverse DTFT of $Y(\omega) = \delta(\omega - \omega_0)$ is $y[n] = \frac{1}{2\pi} e^{j\omega_0 n}$, a complex exponential.

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000	○0000000●00	000000	00	00
DTFT P	airs				

By the linearity of the DTFT, we therefore have the following useful DTFT pairs:

$$e^{j\omega_0 n} \quad \leftrightarrow \quad 2\pi\delta(\omega-\omega_0),$$

and

$$\cos(\omega_0 n) \quad \leftrightarrow \quad \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Suppose we were to try to find the DTFT of $x[n] = e^{j\omega_0 n}$ directly:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} e^{j(\omega-\omega_0)n}$$

- At frequencies ω ≠ ω₀, we would be adding the samples of a sinusoid, which would give us X(ω) = 0.
- At $\omega = \omega_0$, the summation becomes

$$X(\omega_0) = \sum_{n=-\infty}^{\infty} 1 = \infty$$

So X(ω₀) = ∞, and X(ω) = 0 everywhere else. So it's a Dirac delta! The only thing the forward transform doesn't tell us is: what kind of infinity?

- So X(ω₀) = ∞, and X(ω) = 0 everywhere else. So it's a Dirac delta! The only thing the forward transform doesn't tell us is: what kind of infinity?
- The inverse DTFT gives us the answer. It needs to be the kind of infinity such that

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}X(\omega)e^{j\omega n}d\omega=e^{j\omega_0 n},$$

and the solution is $X(\omega) = 2\pi\delta(\omega - \omega_0)$

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000		●○○○○○	00	00
Outline					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1 Review: DFT, DTFT, and Fourier Series
- 2 DTFT of a Windowed Sinusoid
- 3 DTFT of a Non-Windowed Sinusoid
- 4 Windowing in Time = Convolution in Frequency

5 Summary

6 Written Example

Remember that windowing in time = convolution in frequency:

$$y[n] = x[n]w[n] \quad \leftrightarrow \quad Y(\omega) = \frac{1}{2\pi}X(\omega) * W(\omega).$$

But if $x[n] = \cos(\omega_0 n)$, we already know that

$$y[n] = \cos(\omega_0 n) w[n] \quad \leftrightarrow \quad Y(\omega) = \frac{1}{2} W(\omega - \omega_0) + \frac{1}{2} W(\omega + \omega_0)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Can we reconcile these two facts?

The delta function is defined by this sampling property:

$$\int_{-\pi}^{\pi} \delta(\omega - \omega_0) f(\omega) d\omega = f(\omega_0)$$

What does that mean about convolution? Let's try it:

$$\delta(\omega - \omega_0) * W(\omega) = \int_{-\pi}^{\pi} \delta(\theta - \omega_0) W(\omega - \theta) d\theta$$

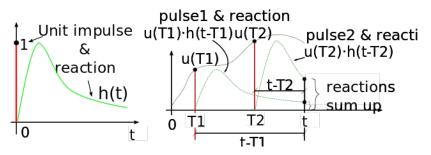
= $W(\omega - \omega_0)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

So we see that:

$$\delta(\omega-\omega_0)*W(\omega)=W(\omega-\omega_0)$$

This is just like the behavior of impulses in the time domain:



https://commons.wikimedia.org/wiki/File:Convolution_of_two_pulses_with_impulse_response.svg

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000		○○○○●○	00	00
DTFT o	f a Windo	wed Cosine			

So if:

$$\cos(\omega_0 n) \quad \leftrightarrow \quad \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0),$$

 and

$$y[n] = x[n]w[n] \quad \leftrightarrow \quad Y(\omega) = \frac{1}{2\pi}X(\omega) * W(\omega),$$

then

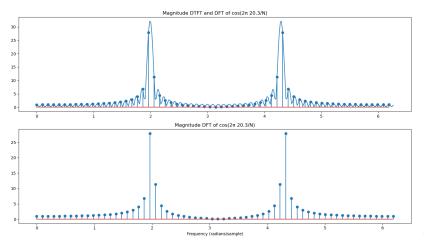
$$\cos(\omega_0 n) w[n] \quad \leftrightarrow \quad \left(\frac{1}{2}\delta(\omega - \omega_0) * W(\omega) + \frac{1}{2}\delta(\omega + \omega_0) * W(\omega)\right)$$
$$= \left(\frac{1}{2}W(\omega - \omega_0) + \frac{1}{2}W(\omega + \omega_0)\right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへぐ

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000		○○○○○●	00	00
DFT of	a Cosine				

So again, we discover that:

$$x[n] = \cos\left(\frac{2\pi 20.3}{N}n\right)w[n]$$



Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000		000000	●○	00
Outline					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1 Review: DFT, DTFT, and Fourier Series
- 2 DTFT of a Windowed Sinusoid
- 3 DTFT of a Non-Windowed Sinusoid
- Windowing in Time = Convolution in Frequency

5 Summary

6 Written Example

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000		000000	○●	00
Summar	У				

• DTFT of a complex exponential is a delta function:

$$e^{j\omega_0 n} \leftrightarrow 2\pi\delta(\omega-\omega_0)$$

• DTFT of a cosine is two delta functions:

$$\cos(\omega_0 n) \leftrightarrow \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$$

• DTFT of a windowed cosine is frequency-shifted window functions:

$$\cos(\omega_0 n)w[n] \quad \leftrightarrow \quad \frac{1}{2}W(\omega-\omega_0)+\frac{1}{2}W(\omega+\omega_0)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000		000000	00	●○
Outline					

- 1 Review: DFT, DTFT, and Fourier Series
- 2 DTFT of a Windowed Sinusoid
- 3 DTFT of a Non-Windowed Sinusoid
- Windowing in Time = Convolution in Frequency

5 Summary

6 Written Example

Review	Windowed	Non-Windowed	Windowing	Summary	Example
0000	0000		000000	00	○●
Written	Example				

Consider the function

$$x[n] = A\cos(\omega_0 n + \theta)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

What is $X(\omega)$? How about y[n] = w[n]x[n]. What is $Y(\omega)$?