Lecture 24: Overlap-Add

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis
(1) Review: Circular Convolution
(2) Fast Fourier Transform
(3) Overlap-Add

4 Written Example

Outline

(1) Review: Circular Convolution
(2) Fast Fourier Transform
(3) Overlap-Add
(4) Written Example

Review: Circular convolution

Multiplying the DFT means circular convolution of the time-domain signals:

$$
y[n]=h[n] \circledast x[n] \leftrightarrow Y[k]=H[k] X[k],
$$

Circular convolution $(h[n] \circledast x[n])$ is defined like this:

$$
h[n] \circledast x[n]=\sum_{m=0}^{N-1} x[m] h\left[((n-m))_{N}\right]=\sum_{m=0}^{N-1} h[m] x\left[((n-m))_{N}\right]
$$

Circular convolution is the same as linear convolution if and only if $N \geq L+M-1$.

Outline

(1) Review: Circular Convolution

(2) Fast Fourier Transform
(3) Overlap-Add
(4) Written Example

Computational Complexity: Convolution and DFT

Convolution is an $O\left\{N^{2}\right\}$ operation: each of the N samples of $y[n]$ is created by adding up N samples of $x[m] h[n-m]$:

$$
y[n]=\sum_{m} x[m] h[n-m]
$$

The way we've learned it so far, the DFT is also an $O\left\{N^{2}\right\}$ operation: each of the N samples of $X[k]$ is created by adding up N samples of $x[n] e^{j \omega_{k} n}$:

$$
X[k]=\sum_{n} x[n] e^{-j \frac{2 \pi k n}{N}}
$$

However...

The Fast Fourier Transform

- The fast Fourier transform (FFT) is a clever divide-and-conquer algorithm that computes all of the N samples of $X[k]$, from $x[n]$, in only $N \log _{2} N$ multiplications.
- It does this by computing all N of the $X[k]$, all at once.
- Multiplications ($x[n] \times w_{k, n}$, for some coefficient $w_{k, n}$) are grouped together, across different groups of k and n.
- On average, each of the N samples of $X[k]$ can be computed using only $\log _{2} N$ multiplications, for a total complexity of $N \log _{2} N$.

What's the difference between N^{2} and $N \log _{2} N$?

Consider filtering $N=1024$ samples of audio (about $1 / 40$ second) with a filter, $h[n]$, that is 1024 samples long.

- Time-domain convolution requires $1024 \times 1024 \approx 1,000,000$ multiplications. If a GPU does 40 billion multiplications/second, then it will take an hour of GPU time to apply this operation to a 1000-hour audio database.
- FFT requires $1024 \times \log _{2} 1024 \approx 10,000$ multiplications. If a GPU does 40 billion multiplications/second, then it will take 36 seconds of GPU time to apply this operation to a 1000-hour audio database.

How is it used?

Suppose we have a 1025 -sample $h[n]$, and we want to filter a one-hour audio (144,000,000 samples). Divide the audio into frames, $x[n]$, of length $M=1024$, zero-pad to $N=L+M-1=2048$, and take their FFTs.

- $H[k]=\operatorname{FFT}\{h[n]\}$: total cost is trivial, because we only need to do this once.
- $X[k]=\operatorname{FFT}\{x[n]\}:$ total cost is $N \log N$ per M samples.
- $Y[k]=X[k] H[k]:$ total cost is N multiplications per M samples.
- $y[n]=\mathrm{FFT}^{-1}\{Y[k]\}$: total cost is $N \log N$ per M samples.

Grand total: $N \times\left(2 \log _{2} N+1\right)=2048 \times 23=47104$ multiplications per 1024 audio samples, or 46 multiplications per sample.

How do we recombine the $y[n]$?

- The main topic of today's lecture: how do we recombine the $y[n]$?
- Remember: each frame of $x[n]$ was 1024 samples, but after zero-padding and convolution, each frame of $y[n]$ is 2048 samples.
- How do we recombine them?

Outline

(1) Review: Circular Convolution

(2) Fast Fourier Transform
(3) Overlap-Add
(4) Written Example

Let's look more closely at what convolution is. Each sample of $x[n]$ generates an impulse response. Those impulse responses are added together to make the output.

$K<\measuredangle \Delta \ggg+\oplus$

First two lines show the first two frames (input on left, output on right). Last line shows the total input (left) and output (right).

Second input frame, $x_{2}[n]$

First output frame, $y_{1}[/$

Second output frame, y_{2}

$y[n]$ total, all frames

$$
1 \lll<\ggg \infty++
$$

The Overlap-Add Algorithm

(1) Divide $x[n]$ into frames
(2) Generate the output from each frame
(3) Overlap the outputs, and add them together

The Overlap-Add Algorithm

(1) Divide $x[n]$ into frames ($w[n]$ is a length $-M$ rectangle).

$$
\begin{aligned}
x_{t}[n] & =x[n+t M] w[n] \\
X_{t}[k] & =\operatorname{FFT}\left\{x_{t}[n]\right\}
\end{aligned}
$$

(2) Generate the output from each frame

$$
\begin{aligned}
Y_{t}[k] & =X_{t}[k] H[k] \\
y_{t}[n] & =\mathrm{FFT}^{-1}\left\{y_{t}[n]\right\}
\end{aligned}
$$

(3) Overlap the outputs, and add them together

$$
y[n]=\sum_{t} y_{t}[n-t M]
$$

Outline

(1) Review: Circular Convolution

(2) Fast Fourier Transform
(3) Overlap-Add
(4) Written Example

Written Example

- Suppose you have a billion samples of audio (about 6 hours' worth), and you want to convolve it with a 1025 -sample lowpass filter. How many multiplications are required to do this using time-domain convolution? How many using overlap-add?
- Suppose that the audio is periodic, with a period of 1024 samples. Each period is 600 ones, followed by 424 zeros. Suppose that the filter is

$$
h[n]=a^{n}, \quad 0 \leq n \leq 1024
$$

Use overlap-add (but with convolutions, not FFT) to find the first 2048 samples of $y[n]$

