# Lecture 23: Circular Convolution 

Mark Hasegawa-Johnson

## ECE 401: Signal and Image Analysis

(1) Review: DTFT and DFT
(2) Sampled in Frequency $\leftrightarrow$ Periodic in Time
(3) Circular Convolution

4 Zero-Padding
(5) Summary

## Outline

(1) Review: DTFT and DFT
(2) Sampled in Frequency $\leftrightarrow$ Periodic in Time

3 Circular Convolution

4 Zero-Padding
(5) Summary

## Review: DTFT

The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$
\begin{aligned}
& X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega
\end{aligned}
$$

Particular useful examples include:

$$
\begin{aligned}
f[n]=\delta[n] & \leftrightarrow F(\omega)=1 \\
g[n]=\delta\left[n-n_{0}\right] & \leftrightarrow G(\omega)=e^{-j \omega n_{0}}
\end{aligned}
$$

## Properties of the DTFT

Properties worth knowing include:
(0) Periodicity: $X(\omega+2 \pi)=X(\omega)$
(1) Linearity:

$$
z[n]=a x[n]+b y[n] \leftrightarrow Z(\omega)=a X(\omega)+b Y(\omega)
$$

(2) Time Shift: $x\left[n-n_{0}\right] \leftrightarrow e^{-j \omega n_{0}} X(\omega)$
(3) Frequency Shift: $e^{j \omega_{0} n} x[n] \leftrightarrow X\left(\omega-\omega_{0}\right)$
(4) Filtering is Convolution:

$$
y[n]=h[n] * x[n] \leftrightarrow Y(\omega)=H(\omega) X(\omega)
$$

## Review: DFT

The DFT (discrete Fourier transform) of any signal is $X[k]$, given by

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}} \\
x[n] & =\frac{1}{N} \sum_{0}^{N-1} X[k] e^{j \frac{2 \pi k n}{N}}
\end{aligned}
$$

Particular useful examples include:

$$
\begin{aligned}
f[n]=\delta[n] \leftrightarrow F[k] & =1 \\
g[n]=\delta\left[\left(\left(n-n_{0}\right)\right)_{N}\right] \leftrightarrow G[k] & =e^{-j \frac{2 \pi k n_{0}}{N}}
\end{aligned}
$$

## Properties of the DTFT

Properties worth knowing include:
(0) Periodicity: $X[k+N]=X[k]$
(1) Linearity:

$$
z[n]=a x[n]+b y[n] \leftrightarrow Z[k]=a X[k]+b Y[k]
$$

(2. Circular Time Shift: $x\left[\left(\left(n-n_{0}\right)\right)_{N}\right] \leftrightarrow e^{-j \frac{2 \pi k n_{0}}{N}} X(\omega)$
(3) Frequency Shift: $e^{j \frac{2 \pi k_{0} n}{N}} x[n] \leftrightarrow X\left[k-k_{0}\right]$
(1) Filtering is Circular Convolution:

$$
y[n]=h[n] \circledast x[n] \leftrightarrow Y[k]=H[k] X[k],
$$

## Outline

## (1) Review: DTFT and DFT

(2) Sampled in Frequency $\leftrightarrow$ Periodic in Time

3 Circular Convolution

4 Zero-Padding
(5) Summary

## Two different ways to think about the DFT

1. $x[n]$ is finite length; DFT is samples of DTFT

$$
x[n]=0, n<0 \text { or } n \geq N \quad \leftrightarrow \quad X[k]=\left.X(\omega)\right|_{\omega=\frac{2 \pi k}{N}}
$$

2. $x[n]$ is periodic; DFT is scaled version of Fourier series

$$
x[n]=x[n+N] \quad \leftrightarrow \quad X[k]=N X_{k}
$$

## 1. $x[n]$ finite length, DFT is samples of DTFT

If $x[n]$ is nonzero only for $0 \leq n \leq N-1$, then

$$
X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}=\sum_{n=0}^{N-1} x[n] e^{-j \omega n}
$$

and

$$
X[k]=\left.X(\omega)\right|_{\omega=\frac{2 \pi k}{N}}
$$

## 2. $x[n]$ periodic, $X[k]=N X_{k}$

If $x[n]=x[n+N]$, then its Fourier series is

$$
\begin{aligned}
X_{k} & =\frac{1}{N} \sum_{n=1}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}} \\
x[n] & =\sum_{k=0}^{N-1} X_{k} e^{j \frac{2 \pi k n}{N}}
\end{aligned}
$$

and its DFT is

$$
\begin{aligned}
& X[k]=\sum_{n=1}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}} \\
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi k n}{N}}
\end{aligned}
$$

## Delayed impulse wraps around

$$
\delta\left[\left(\left(n-n_{0}\right)\right)_{N}\right] \leftrightarrow e^{-j \frac{2 \pi k n_{0}}{N}}
$$



## Delayed impulse is really periodic impulse

$$
\delta\left[\left(\left(n-n_{0}\right)\right)_{N}\right] \leftrightarrow e^{-j \frac{2 \pi k n_{0}}{N}}
$$



## Principal Phase

- Something weird going on: how can the phase keep getting bigger and bigger, but the signal wraps around?
- It's because the phase wraps around too!

$$
\angle X[k]=-\omega_{k}(N+n)=-\omega_{k} n, \quad \text { because } \omega_{k}=\frac{2 \pi k}{N}
$$

- Principal phase $=$ add $\pm 2 \pi$ to the phase, as necessary, so that $-\pi<\angle X[k] \leq \pi$
- Unwrapped phase $=$ let the phase be as large as necessary so that it is plotted as a smooth function of $\omega$


## Unwrapped phase vs. Principal phase

$$
\delta\left[\left(\left(n-n_{0}\right)\right)_{N}\right] \leftrightarrow e^{-j \frac{2 \pi k n_{0}}{N}}
$$



## Summary: Two different ways to think about the DFT

## 1. $x[n]$ is finite length; DFT is samples of DTFT

$$
x[n]=0, n<0 \text { or } n \geq N \quad \leftrightarrow \quad X[k]=\left.X(\omega)\right|_{\omega=\frac{2 \pi k}{N}}
$$

2. $x[n]$ is periodic; DFT is scaled version of Fourier series

$$
x[n]=x[n+N] \quad \leftrightarrow \quad X[k]=N X_{k}
$$

## Outline

(1) Review: DTFT and DFT
(2) Sampled in Frequency $\leftrightarrow$ Periodic in Time
(3) Circular Convolution
(4) Zero-Padding
(5) Summary

## Multiplying two DFTs: what we think we're doing






## Multiplying two DFTs: what we're actually doing



Periodic $y[n]=x[n]^{*} h[n]$


|X[k]|

$|Y[k]|=|H[k] X[k]|$


## Circular convolution

Suppose $Y[k]=H[k] X[k]$, then

$$
\begin{aligned}
y[n] & =\frac{1}{N} \sum_{k=0}^{N-1} H[k] X[k] e^{j \frac{2 \pi k n}{N}} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} H[k]\left(\sum_{m=0}^{N-1} x[m] e^{-j \frac{2 \pi k m}{N}}\right) e^{j \frac{2 \pi k n}{N}} \\
& =\sum_{m=0}^{N-1} x[m]\left(\frac{1}{N} \sum_{k=0}^{N-1} H[k] e^{-j \frac{2 \pi k(n-m)}{N}}\right) \\
& =\sum_{m=0}^{N-1} x[m] h\left[((n-m))_{N}\right]
\end{aligned}
$$

The last line is because $\frac{2 \pi k(n-m)}{N}=\frac{2 \pi k((n-m))_{N}}{N}$.

## Circular convolution

Multiplying the DFT means circular convolution of the time-domain signals:

$$
y[n]=h[n] \circledast x[n] \leftrightarrow Y[k]=H[k] X[k],
$$

Circular convolution $(h[n] \circledast x[n])$ is defined like this:

$$
h[n] \circledast x[n]=\sum_{m=0}^{N-1} x[m] h\left[((n-m))_{N}\right]=\sum_{m=0}^{N-1} h[m] x\left[((n-m))_{N}\right]
$$

## Circular convolution example







## Circular convolution example






K

## Outline

## (1) Review: DTFT and DFT

(2) Sampled in Frequency $\leftrightarrow$ Periodic in Time

3 Circular Convolution
(4) Zero-Padding
(5) Summary

## How long is $h[n] * x[n]$ ?

If $x[n]$ is $M$ samples long, and $h[n]$ is $L$ samples long, then their linear convolution, $y[n]=x[n] * h[n]$, is $M+L-1$ samples long.


## Zero-padding turns circular convolution into linear convolution

How it works:

- $h[n]$ is length $-L$
- $x[n]$ is length $-M$
- As long as they are both zero-padded to length $N \geq L+M-1$, then
- $y[n]=h[n] \circledast x[n]$ is the same as $h[n] * x[n]$.


## Zero-padding turns circular convolution into linear

 convolutionWhy it works: Either...

- $n-m$ is a positive number, between 0 and $N-1$. Then $((n-m))_{N}=n-m$, and therefore

$$
x[m] h\left[((n-m))_{N}\right]=x[m] h[n-m]
$$

- $n-m$ is a negative number, between 0 and $-(L-1)$. Then $((n-m))_{N}=N+n-m \geq N-(L-1)>M-1$, so

$$
x[m] h\left[((n-m))_{N}\right]=0
$$

## Case \#1: $n-m$ is positive, so circular convolution is the

 same as linear convolution






Case \#2: $n-m$ is negative, so it wraps around, but $N$ is long enough so that the wrapped part of $h\left[((n-m))_{N}\right]$ doesn't overlap with $x[m]$


## Zero-padding turns circular convolution into linear convolution



$h[n]$





## Outline

## (1) Review: DTFT and DFT

(2) Sampled in Frequency $\leftrightarrow$ Periodic in Time

3 Circular Convolution
(4) Zero-Padding
(5) Summary

## Summary: Two different ways to think about the DFT

## 1. $x[n]$ is finite length; DFT is samples of DTFT

$$
x[n]=0, n<0 \text { or } n \geq N \quad \leftrightarrow \quad X[k]=\left.X(\omega)\right|_{\omega=\frac{2 \pi k}{N}}
$$

2. $x[n]$ is periodic; DFT is scaled version of Fourier series

$$
x[n]=x[n+N] \quad \leftrightarrow \quad X[k]=N X_{k}
$$

## Circular convolution

Multiplying the DFT means circular convolution of the time-domain signals:

$$
y[n]=h[n] \circledast x[n] \leftrightarrow Y[k]=H[k] X[k],
$$

Circular convolution $(h[n] \circledast x[n])$ is defined like this:

$$
h[n] \circledast x[n]=\sum_{m=0}^{N-1} x[m] h\left[((n-m))_{N}\right]=\sum_{m=0}^{N-1} h[m] x\left[((n-m))_{N}\right]
$$

Circular convolution is the same as linear convolution if and only if $N \geq L+M-1$.

