DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written

Lecture 22: Discrete Fourier Transform

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4 Example: Shifted Delta Function
- 5 Example: Cosine
- 6 Properties of the DFT

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
●○○	000000	0000	00	000000000		000	00
Outli	ne						

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

1 Review: DTFT

2 DFT

- 3 Example
- 4 Example: Shifted Delta Function
- 5 Example: Cosine
- 6 Properties of the DFT
- 7 Summary
- 8 Written Example

The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n} d\omega$$

Particular useful examples include:

$$f[n] = \delta[n] \leftrightarrow F(\omega) = 1$$
$$g[n] = \delta[n - n_0] \leftrightarrow G(\omega) = e^{-j\omega n_0}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

DTFT DFT Example Delta Cosine Properties of DFT Summary Written OO OOO OO OOO OOO

Properties worth knowing include:

• Periodicity: $X(\omega + 2\pi) = X(\omega)$

1 Linearity:

$$z[n] = ax[n] + by[n] \leftrightarrow Z(\omega) = aX(\omega) + bY(\omega)$$

- 2 Time Shift: $x[n n_0] \leftrightarrow e^{-j\omega n_0} X(\omega)$
- Solution Frequency Shift: $e^{j\omega_0 n} x[n] \leftrightarrow X(\omega \omega_0)$
- Iltering is Convolution:

$$y[n] = h[n] * x[n] \leftrightarrow Y(\omega) = H(\omega)X(\omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	●00000	0000	00	000000000		000	00
Outli	ne						

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Review: DTFT

- 3 Example
- 4 Example: Shifted Delta Function
- 5 Example: Cosine
- 6 Properties of the DFT
- 7 Summary
- 8 Written Example

- The DTFT has a big problem: it requires an infinite-length summation, therefore you can't compute it on a computer.
- The DFT solves this problem by assuming a **finite length** signal.
- "N equations in N unknowns:" if there are N samples in the time domain (x[n], 0 ≤ n ≤ N − 1), then there are only N independent samples in the frequency domain (X(ω_k), 0 ≤ k ≤ N − 1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	00●000	0000	00	000000000	000000000	000	00
Finite	e-length	signal					

First, assume that x[n] is nonzero only for $0 \le n \le N - 1$. Then the DTFT can be computed as:

$$X(\omega) = \sum_{n=0}^{N-1} x[n] e^{-j\omega n}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

DTFT DFT Example Delta Cosine Properties of DFT Summary Written N equations in N unknowns

Since there are only N samples in the time domain, there are also only N independent samples in the frequency domain:

$$X[k] = X(\omega_k) = \sum_{n=0}^{N-1} x[n] e^{-j\omega_k n} = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}$$

where

$$\omega_k = \frac{2\pi k}{N}, \ \ 0 \le k \le N-1$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	○000●0	0000	00	000000000		000	00
Discr	ete Fou	rier Tra	nsfor	n			

Putting it all together, we get the formula for the DFT:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}}$$

Using orthogonality, we can also show that

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi kn}{N}}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	●○○○	00	000000000		000	00
Outli	ne						

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

1 Review: DTFT

2 DFT

3 Example

4 Example: Shifted Delta Function

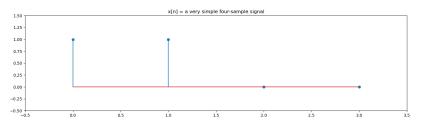
5 Example: Cosine

6 Properties of the DFT

7 Summary

8 Written Example

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	○●○○	00	000000000	000000000	000	00
Exam	nple						



Consider the signal

$$x[n] = \begin{cases} 1 & n=0,1 \\ 0 & n=2,3 \\ undefined & otherwise \end{cases}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	○0●0	00	000000000		000	00
Exam	nple DF	Т					

$$X[k] = \sum_{n=0}^{3} x[n] e^{-j\frac{2\pi kn}{4}}$$
$$= 1 + e^{-j\frac{2\pi k}{4}}$$
$$= \begin{cases} 2 & k = 0\\ 1 - j & k = 1\\ 0 & k = 2\\ 1 + j & k = 3 \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	○○○●	00	000000000		000	00
Exam	ple ID	FT .					

$$X[k] = [2, (1-j), 0, (1+j)]$$

$$\begin{aligned} x[n] &= \frac{1}{4} \sum_{k=0}^{3} X[k] e^{j\frac{2\pi kn}{4}} \\ &= \frac{1}{4} \left(2 + (1-j) e^{j\frac{2\pi n}{4}} + (1+j) e^{j\frac{6\pi n}{4}} \right) \\ &= \frac{1}{4} \left(2 + (1-j) j^n + (1+j) (-j)^n \right) \\ &= \begin{cases} 1 & n = 0, 1 \\ 0 & n = 2, 3 \end{cases} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	●○	000000000		000	00
Outli	ne						

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

1 Review: DTFT

3 Example

4 Example: Shifted Delta Function

5 Example: Cosine

6 Properties of the DFT

O Summary

8 Written Example

DTFT DFT Example Delta Cosine Properties of DFT Summary OCO Shifted Delta Function

In many cases, we can find the DFT directly from the DTFT. For example:

$$h[n] = \delta[n - n_0] \quad \leftrightarrow \quad H(\omega) = e^{-j\omega n_0}$$

If and only if the signal is less than length *N*, we can just plug in $\omega_k = \frac{2\pi k}{N}$:

$$h[n] = \delta[n - n_0] \quad \leftrightarrow \quad H[k] = \begin{cases} e^{-j\frac{2\pi k n_0}{N}} & 0 \le n_0 \le N - 1\\ \text{undefined} & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	●○○○○○○○○		000	00
Outli	ne						

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- 1 Review: DTFT
- 2 DFT
- 3 Example
- 4 Example: Shifted Delta Function
- 5 Example: Cosine
- 6 Properties of the DFT
- O Summary
- 8 Written Example

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	○●0000000	000000000	000	00
Cosir	ie						

Finding the DFT of a cosine is possible, but harder than you might think. Consider:

$$x[n] = \cos(\omega_0 n)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

This signal violates the first requirement of a DFT:

• x[n] must be finite length.

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	○○●○○○○○○	000000000	000	00
Cosin	ie						

We can make x[n] finite-length by windowing it, like this:

 $x[n] = \cos(\omega_0 n) w[n],$

where w[n] is the rectangular window,

$$w[n] = egin{cases} 1 & 0 \leq n \leq N-1 \ 0 & ext{otherwise} \end{cases}$$

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	○○○●○○○○○	000000000	000	00
Cosin	ie						

Now that x[n] is finite length, we can just take its DTFT, and then sample at $\omega_k = \frac{2\pi k}{N}$:

$$X[k] = X(\omega_k) = \sum_{n=0}^{N-1} x[n]e^{-j\omega_k n}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

But how do we solve this equation?

$$X(\omega_k) = \sum_{n=0}^{N-1} \cos(\omega_0 n) w[n] e^{-j\omega_k n}$$

The answer is, surprisingly, that we can use two properties of the DTFT:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Linearity: $x_1[n] + x_2[n] \leftrightarrow X_1(\omega) + X_2(\omega)$
- Frequency Shift: $e^{j\omega_0 n} z[n] \leftrightarrow Z(\omega \omega_0)$

DTFT DFT Example Delta Cosine Properties of DFT Summary Written Linearity and Frequency-Shift Properties of the DTFT Summary OO OO

• Linearity:

$$\cos(\omega_0 n)w[n] = \frac{1}{2}e^{j\omega_0 n}w[n] + \frac{1}{2}e^{-j\omega_0 n}w[n]$$

• Frequency Shift:

$$e^{j\omega_0 n}w[n] \leftrightarrow W(\omega-\omega_0)$$

Putting them together, we have that

$$\cos(\omega_0 n)w[n] \quad \leftrightarrow \quad \frac{1}{2}W(\omega-\omega_0)+\frac{1}{2}W(\omega+\omega_0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	○○○○○○●○○		000	00
DFT	of a C	osine					

Putting it together,

$$x[n] = \cos(\omega_0 n) w[n] \quad \leftrightarrow \quad X(\omega_k) = \frac{1}{2} W(\omega_k - \omega_0) + \frac{1}{2} W(\omega_k + \omega_0)$$

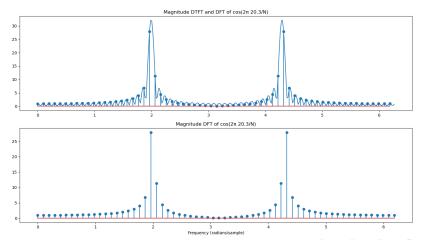
where $W(\omega)$ is the Dirichlet form:

$$W(\textit{omega}) = e^{-j\omega rac{N-1}{2}} rac{\sin(\omega N/2)}{\sin(\omega/2)}$$

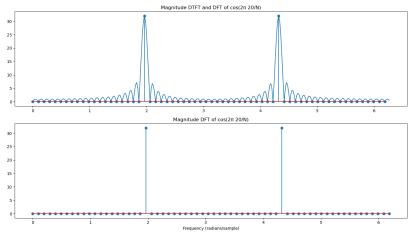
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Here's the DFT of

$$x[n] = \cos\left(\frac{2\pi 20.3}{N}n\right) w[n]$$



Remember that $W(\omega) = 0$ whenever ω is a multiple of $\frac{2\pi}{N}$. But **the DFT only samples at multiples of** $\frac{2\pi}{N}$! So if ω_0 is **also** a multiple of $\frac{2\pi}{N}$, then the DFT of a cosine is just a pair of impulses in frequency:



DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	000000000		000	00
Outli	ne						

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Review: DTFT

2 DFT

- 3 Example
- 4 Example: Shifted Delta Function
- 5 Example: Cosine
- 6 Properties of the DFT
- 7 Summary
- **8** Written Example

DTFT DFT Example Delta Cosine Properties of DFT Summary Written Ooo Ooo Ooo Ooo Ooo Ooo Ooo Ooo Ooo Periodic in Frequency Image: Cosine ooo <tdI

Just as $X(\omega)$ is periodic with period 2π , in the same way, X[k] is periodic with period N:

$$X[k + N] = \sum_{n} x[n]e^{-j\frac{2\pi(k+N)n}{N}}$$
$$= \sum_{n} x[n]e^{-j\frac{2\pi kn}{N}}e^{-j\frac{2\pi Nn}{N}}$$
$$= \sum_{n} x[n]e^{-j\frac{2\pi kn}{N}}$$
$$= X[k]$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DTFT DFT Example Delta Cosine Properties of DFT Summary Written Operiodic in Time Operiodic in Time

The inverse DFT is also periodic in time! x[n] is undefined outside $0 \le n \le N - 1$, but if we accidentally try to compute x[n] at any other times, we end up with:

$$\begin{aligned} x[n+N] &= \frac{1}{N} \sum_{k} X[k] e^{j\frac{2\pi k(n+N)}{N}} \\ &= \frac{1}{N} \sum_{k} X[k] e^{j\frac{2\pi kn}{N}} e^{j\frac{2\pi kN}{N}} \\ &= \frac{1}{N} \sum_{k} X[k] e^{j\frac{2\pi kn}{N}} \\ &= x[n] \end{aligned}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	000000000	○00●00000	000	00
Linea	rity						

$ax_1[n] + bx_2[n] \quad \leftrightarrow \quad aX_1[k] + bX_2[k]$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	000000000		000	00
Samp	oles of t	the DT	FT				

If x[n] is finite length, with length of at most N samples, then

$$X[k] = X(\omega_k), \ \ \omega_k = rac{2\pi k}{N}$$

 DTFT
 DFT
 Example
 Delta
 Cosine
 Properties of DFT
 Summary
 Written

 Conjugate Symmetry of the DTFT
 Summary
 O
 O
 O
 O
 O

Here's a property of the DTFT that we didn't talk about much. Suppose that x[n] is real. Then

$$X(-\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j(-\omega)n}$$
$$= \sum_{n=-\infty}^{\infty} x[n]e^{j\omega n}$$
$$= \left(\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right)^{*}$$
$$= X^{*}(\omega)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 DTFT
 DFT
 Example
 Delta
 Cosine
 Properties of DFT
 Summary
 Written

 000
 000
 00
 000
 000
 000
 000
 000
 000

 Conjugate Symmetry of the DFT
 000
 000
 000
 000
 000
 000

$$X(\omega) = X^*(-\omega)$$

Remember that the DFT, X[k], is just the samples of the DTFT, sampled at $\omega_k = \frac{2\pi k}{N}$. So that means that conjugate symmetry also applies to the DFT:

$$X[k] = X^*[-k]$$

But remember that the DFT is periodic with a period of N, so

$$X[k] = X^*[-k] = X^*[N-k]$$

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	000000000	○000000●0	000	00
Frequ	uency S	hift					

The frequency shift property of the DTFT also applies to the DFT:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$w[n]e^{j\omega_0 n} \leftrightarrow W(\omega - \omega_0)$$

If $\omega = \frac{2\pi k}{N}$, and if $\omega_0 = \frac{2\pi k_0}{N}$, then we get
 $w[n]e^{j\frac{2\pi k_0 n}{N}} \leftrightarrow W[k - k_0]$

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	000000000	○0000000●	000	00
Time	Shift						

The time shift property of the DTFT was

$$x[n-n_0] \leftrightarrow e^{j\omega n_0}X(\omega)$$

The same thing also applies to the DFT, except that **the DFT is finite in time**. Therefore we have to use what's called a "circular shift:"

$$x\left[((n-n_0))_N
ight] ~~\leftrightarrow~~ e^{-jrac{2\pi k n_0}{N}}X[k]$$

where $((n - n_0))_N$ means " $n - n_0$, modulo N." We'll talk more about what that means in the next lecture.

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	000000000		●○○	00
Outli	ne						

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Review: DTFT

2 DFT

- 3 Example
- 4 Example: Shifted Delta Function
- 5 Example: Cosine
- 6 Properties of the DFT

Summary

8 Written Example

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	000000000		○●○	00
DFT	Examp	les					

 $x[n] = [1, 1, 0, 0] \quad \leftrightarrow \quad X[k] = [2, 1 - j, 0, 1 + j]$

$$x[n] = \delta[n - n_0] \quad \leftrightarrow \quad X[k] = \begin{cases} e^{-j\frac{2\pi k n_0}{N}} & 0 \le n_0 \le N - 1\\ \text{undefined} & \text{otherwise} \end{cases}$$

$$\begin{aligned} x[n] &= w[n] \cos(\omega_0 n) \\ \leftrightarrow \quad X[k] &= \frac{1}{2} W \left[k - \frac{N\omega_0}{2\pi} \right] + \frac{1}{2} W \left[k + \frac{N\omega_0}{2\pi} \right] \end{aligned}$$

DTFT DFT Example Delta Cosine Properties of DFT Summary Written ODFT Properties 000 000 000 000 000 00

O Periodic in Time and Frequency:

$$x[n] = x[n+N], \quad X[k] = X[k+N]$$

2 Linearity:

 $ax_1[n] + bx_2[n] \quad \leftrightarrow \quad aX_1[k] + bX_2[k]$

Samples of the DTFT: if x[n] has length at most N samples, then

$$X[k] = X(\omega_k), \quad \omega_k = \frac{2\pi k}{N}$$

Time & Frequency Shift:

$$x[n]e^{j\frac{2\pi k_0 n}{N}} \leftrightarrow X[k-k_0]$$
$$x[((n-n_0))_N] \leftrightarrow X[k]e^{-j\frac{2\pi k n_0}{N}}$$

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	000000000		000	●○
Outli	ne						

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1 Review: DTFT
- 2 DFT
- 3 Example
- 4 Example: Shifted Delta Function
- 5 Example: Cosine
- 6 Properties of the DFT
- 7 Summary
- 8 Written Example

DTFT	DFT	Example	Delta	Cosine	Properties of DFT	Summary	Written
000	000000	0000	00	000000000	000000000	000	○●
Written Example							

Show that the signal $x[n] = \delta[n - n_0]$ obeys the conjugate symmetry properties of both the DFT and DTFT.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙