Lecture 20: Windows

Mark Hasegawa-Johnson
These slides are in the public domain

ECE 401: Signal and Image Analysis, Fall 2023
(1) Motivation: Finite Impulse Response (FIR) Filters
(2) Rectangular Windows
(3) Bartlett Windows
(4) Hann and Hamming Windows
(5) Summary

Outline

(1) Motivation: Finite Impulse Response (FIR) Filters
(2) Rectangular Windows
(3) Bartlett Windows
4) Hann and Hamming Windows
(5) Summary

How to create a realizable digital filter

- $L=$ Odd Length:

$$
h[n]=h_{i}[n] w[n],
$$

where $w[n]$ is nonzero for $-\left(\frac{L-1}{2}\right) \leq n \leq\left(\frac{L-1}{2}\right)$

- $L=$ Even Length:

$$
h[n]=h_{i}\left[n-\left(\frac{L-1}{2}\right)\right] w[n]
$$

where $w[n]$ is nonzero for $0 \leq n \leq L-1$.

Multiplication \leftrightarrow Convolution!

- Convolution \leftrightarrow Multiplication:

$$
h[n] * x[n] \leftrightarrow H(\omega) X(\omega)
$$

- Multiplication \leftrightarrow Convolution:

$$
w[n] h[n] \leftrightarrow \frac{1}{2 \pi} W(\omega) * H(\omega)
$$

Result: Windowing Causes Artifacts

We've already seen the result. Windowing by a rectangular window (i.e., truncation) causes nasty artifacts!

Truncated $h_{L P}[n]$, omegac $=\pi / 4$

Windowing Causes Artifacts

$$
h[n]=h_{i}[n] w[n] \leftrightarrow H(\omega)=\frac{1}{2 \pi} H_{i}(\omega) * W(\omega)
$$

Today's Topic:

What is $W(\omega)$?

Outline

(1) Motivation: Finite Impulse Response (FIR) Filters
(2) Rectangular Windows
(3) Bartlett Windows
4) Hann and Hamming Windows
(5) Summary

Review: Rectangle \leftrightarrow Sinc

- The DTFT of a sinc is a rectangle:

$$
h[n]=\left(\frac{\omega_{c}}{\pi}\right) \operatorname{sinc}\left(\omega_{c} n\right) \quad \leftrightarrow \quad H(\omega)= \begin{cases}1 & |\omega|<\omega_{c} \\ 0 & \omega_{c}<|\omega|<\pi\end{cases}
$$

- The DTFT of a rectangle is a sinc-like function, called the Dirichlet form:

$$
w_{R}[n]=\left\{\begin{array}{ll}
1 & |n| \leq \frac{L-1}{2} \\
0 & \text { otherwise }
\end{array} \quad \leftrightarrow \quad W_{R}(\omega)=\frac{\sin (\omega L / 2)}{\sin (\omega / 2)}\right.
$$

Dirichlet Form: Proof Review

Review of the proof:

$$
\begin{aligned}
W_{R}(\omega) & =\sum_{n=-\infty}^{\infty} w_{R}[n] e^{-j \omega n}=\sum_{n=-\frac{L-1}{2}}^{\frac{L-1}{2}} e^{-j \omega n} \\
& =e^{j \omega\left(\frac{L-1}{2}\right)} \sum_{m=0}^{L-1} e^{-j \omega m} \\
& =e^{j \omega\left(\frac{L-1}{2}\right)}\left(\frac{1-e^{-j \omega L}}{1-e^{-j \omega}}\right) \\
& =\left(\frac{e^{j \omega L / 2}-e^{-j \omega L / 2}}{e^{j \omega / 2}-e^{-j \omega / 2}}\right) \\
& =\left(\frac{\sin (\omega L / 2)}{\sin (\omega / 2)}\right)
\end{aligned}
$$

Review: Rectangle \leftrightarrow Sinc

$h_{i}[n]$, omegac $=\pi / 4$

$w_{R}[n]$, length $=11$

$H_{i}(\omega)$, omegac $=\pi / 4$

$W_{R}(\omega)$, length $=11$

Properties of the Dirichlet form: Periodicity

$$
W_{R}(\omega)=\frac{\sin (\omega L / 2)}{\sin (\omega / 2)}
$$

Both numerator and denominator are periodic with period 2π.
$W_{R}(\omega)$ is periodic with a period of 2π

Properties of the Dirichlet form: DC Value

$W_{R}(\omega)$ has a peak amplitude of L

$$
W_{R}(0)=\sum_{n=-\infty}^{\infty} w[n]=L
$$

Properties of the Dirichlet form: Sinc-like

$$
\begin{aligned}
W_{R}(\omega) & =\frac{\sin (\omega L / 2)}{\sin (\omega / 2)} \\
& \approx \frac{\sin (\omega L / 2)}{\omega / 2}
\end{aligned}
$$

Because, for small values of ω, $\sin \left(\frac{\omega}{2}\right) \approx \frac{\omega}{2}$.

Properties of the Dirichlet form: Nulls

$$
W_{R}(\omega)=\frac{\sin (\omega L / 2)}{\sin (\omega / 2)}
$$

It equals zero whenever

$$
\frac{\omega L}{2}=k \pi
$$

For any nonzero integer, k.

Properties of the Dirichlet form: Sidelobes

Its sidelobes are

$$
\begin{aligned}
& W_{R}\left(\frac{3 \pi}{L}\right)=\frac{-1}{\sin (3 \pi / 2 L)} \approx \frac{-2 L}{3 \pi} \\
& W_{R}\left(\frac{5 \pi}{L}\right)=\frac{1}{\sin (5 \pi / 2 L)} \approx \frac{2 L}{5 \pi} \\
& W_{R}\left(\frac{7 \pi}{L}\right)=\frac{-1}{\sin (7 \pi / 2 L)} \approx \frac{-2 L}{7 \pi}
\end{aligned}
$$

Properties of the Dirichlet form: Relative Sidelobe Amplitudes

The relative sidelobe amplitudes don't depend on L :

$$
\begin{aligned}
& \frac{W_{R}\left(\frac{3 \pi}{L}\right)}{W_{R}(0)}=\frac{-1}{L \sin (3 \pi / 2 L)} \approx \frac{-2}{3 \pi} \\
& \frac{W_{R}\left(\frac{5 \pi}{L}\right)}{W_{R}(0)}=\frac{1}{L \sin (5 \pi / 2 L)} \approx \frac{2}{5 \pi} \\
& \frac{W_{R}\left(\frac{7 \pi}{L}\right)}{W_{R}(0)}=\frac{-1}{L \sin (7 \pi / 2 L)} \approx \frac{-2}{7 \pi}
\end{aligned}
$$

Properties of the Dirichlet form: Decibels

We often describe the relative
sidelobe amplitudes in decibels,
which are defined as

$$
\begin{aligned}
& 20 \log _{10}\left|\frac{W\left(\frac{3 \pi}{L}\right)}{W(0)}\right| \approx 20 \log _{10} \frac{2}{3 \pi} \approx-13 \mathrm{~dB} \\
& \hline 20 \log _{10}\left|\frac{W\left(\frac{5 \pi}{L}\right)}{W(0)}\right| \\
& 220 \log _{10} \frac{2}{5 \pi} \approx-18 \mathrm{~dB} \\
& -30
\end{aligned}
$$

$$
20 \log _{10}\left|\frac{W\left(\frac{7 \pi}{L}\right)}{W(0)}\right| \approx 20 \log _{10} \frac{2}{7 \pi} \approx-21 \mathrm{~dB}
$$

Outline

(1) Motivation: Finite Impulse Response (FIR) Filters
(2) Rectangular Windows
(3) Bartlett Windows

4 Hann and Hamming Windows
(5) Summary

Bartlett (Triangular) Window

A Bartlett window is a triangle:

$$
w_{B}[n]=\max \left(0,1-\frac{|n|}{(L-1) / 2}\right)
$$

A Bartlett window is the convolution of two rectangular windows, each with a height of $\sqrt{\frac{2}{L-1}}$ and a length of $\frac{L-1}{2}$.

$y[m]=h[m]^{*} x[m]$

Since each of the two little rectangles has a height of $\sqrt{\frac{2}{L-1}}$ and a length of $\frac{L-1}{2}$, their spectra have a DC value of

$$
W_{B}(0)=\sqrt{\frac{L-1}{2}},
$$

and nulls of

$$
W_{B}\left(\frac{4 \pi k}{L-1}\right)=0
$$

Rectangle with length (L-1)/2, height sqrt(2/(L-1))

Since

$$
w_{B}[n]=w_{R}[n] * w_{R}[n],
$$

therefore

$$
W_{B}(\omega)=\left(W_{R}(\omega)\right)^{2}
$$

Bartlett window w/length L

DTFT of Bartlett window

In particular: the sidelobes of a Bartlett window are much lower than those of a rectangular window!

$$
\begin{aligned}
20 \log _{10}\left|\frac{W_{B}\left(\frac{6 \pi}{L-1}\right)}{W(0)}\right| & \approx-26 \mathrm{~dB} \\
20 \log _{10}\left|\frac{W\left(\frac{10 \pi}{L-1}\right)}{W(0)}\right| & \approx-36 \mathrm{~dB}
\end{aligned}
$$

Things to Notice

- The main lobe width has been doubled, because the Bartlett window is created by convolving two half-length rectangular windows.
- Therefore $H(\omega)=\frac{1}{2 \pi} W_{N}(\omega) * H_{i}(\omega)$ will have a wider transition band.
- The sidelobe height has been dramatically reduced, because convolving in the time domain means multiplying in the frequency domain.
- Therefore $H(\omega)=\frac{1}{2 \pi} W_{N}(\omega) * H_{i}(\omega)$ will have much lower stopband ripple.

Outline

(1) Motivation: Finite Impulse Response (FIR) Filters

(2) Rectangular Windows
(3) Bartlett Windows
(4) Hann and Hamming Windows
(5) Summary

The Hann Window

Here's the Hann window:

$$
w_{N}[n]=w_{R}[n]\left(\frac{1}{2}+\frac{1}{2} \cos \left(\frac{2 \pi n}{L-1}\right)\right)
$$

Spectrum of the Hann Window

$$
\begin{aligned}
w_{N}[n] & =w_{R}[n]\left(\frac{1}{2}+\frac{1}{2} \cos \left(\frac{2 \pi n}{L-1}\right)\right) \\
& =\frac{1}{2} w_{R}[n]+\frac{1}{4} w_{R}[n] e^{-j \frac{j \pi}{L-1}}+\frac{1}{4} w_{R}[n] e^{+j \frac{2 \pi}{L-1}}
\end{aligned}
$$

So its spectrum is:

$$
W_{N}(\omega)=\frac{1}{2} W_{R}(\omega)+\frac{1}{4} W_{R}\left(\omega-\frac{2 \pi}{L-1}\right)+\frac{1}{4} W_{R}\left(\omega+\frac{2 \pi}{L-1}\right)
$$

Spectrum of the Rectangular Window

Here's the DTFT of the rectangular window, $0.5 W_{R}(\omega)$:

Center term of Hann spectrum is just $0.5 W_{R}(\omega)$

Spectrum of Two Parts of the Hann Window

Here's the DTFT of two parts of the Hann Window, $\frac{1}{2} W_{R}(\omega)+\frac{1}{4} W_{R}\left(\omega-\frac{2 \pi}{L-1}\right):$

First two terms are $0.5 W_{R}(\omega)+0.25 W_{R}(\omega-2 \pi /(L-1))$

Spectrum of the Hann Window

Here's the DTFT of the Hann window,

$$
W_{N}(\omega)=\frac{1}{2} W_{R}(\omega)+\frac{1}{4} W_{R}\left(\omega-\frac{2 \pi}{L-1}\right)^{\prime}+\frac{1}{4} W_{R}\left(\omega+\frac{2 \pi}{L-1}\right):
$$

All 3 terms of the Hann window spectrum

Things to Notice

- The main lobe width has been doubled, because each of the two nulls next to the main lobe have been canceled out.
- Therefore $H(\omega)=\frac{1}{2 \pi} W_{N}(\omega) * H_{i}(\omega)$ will have a wider transition band.
- The sidelobe height has been dramatically reduced, because the frequency-shifted copies each cancel out the main copy.
- Therefore $H(\omega)=\frac{1}{2 \pi} W_{N}(\omega) * H_{i}(\omega)$ will have much lower stopband ripple.

The Hamming Window

Here's the Hamming window:

$$
w_{M}[n]=w_{R}[n]\left(A+(1-A) \cos \left(\frac{2 \pi n}{L-1}\right)\right)
$$

Spectrum of the Hamming Window

$$
W_{M}(\omega)=A W_{R}(\omega)+\frac{1-A}{2} W_{R}\left(\omega-\frac{2 \pi}{L-1}\right)+\frac{1-A}{2} W_{R}\left(\omega+\frac{2 \pi}{L-1}\right),
$$

where A is chosen to minimize the height of the first sidelobe:

Spectrum of the Hamming Window

The first sidelobe is at $\omega=\frac{5 \pi}{L}$. At that frequency, $W_{M}(\omega)$ is roughly:

$$
\begin{aligned}
& A W_{R}\left(\frac{5 \pi}{L}\right)+\frac{1-A}{2} W_{R}\left(\frac{5 \pi}{L}-\frac{2 \pi}{L}\right)+\frac{1-A}{2} W_{R}\left(\frac{5 \pi}{L}+\frac{2 \pi}{L}\right) \\
& \approx A\left(\frac{L}{5 \pi}\right)-\frac{1-A}{2}\left(\frac{L}{3 \pi}\right)-\frac{1-A}{2}\left(\frac{L}{7 \pi}\right) \\
& \approx(0.13945 A-0.07579) L
\end{aligned}
$$

... which is zero if $A=0.5434782$.

The Hamming Window

The Hamming window chooses $A=0.5434782$, rounded off to two significant figures:

$$
w_{M}[n]=w_{R}[n]\left(0.54+0.46 \cos \left(\frac{2 \pi n}{L-1}\right)\right)
$$

... with the result that the first sidelobe of the Hamming window has an amplitude below 0.01:

Outline

(1) Motivation: Finite Impulse Response (FIR) Filters
(2) Rectangular Windows
(3) Bartlett Windows

4 Hann and Hamming Windows
(5) Summary

Main Features of Four Windows

Window	Shape	First Null (\approx Transition Bandwidth)	First Side- lobe (\approx Stopband Ripple)	First Sidelobe Level
Rectangular rectangle		$\frac{2 \pi}{L}$	0.11L	-13dB
Bartlett	triangle	$\frac{4}{L}$	0.05L	-26dB
Hann	raised cosine	$\frac{4 \pi}{L}$	-0.028L	-31dB
Hamming	raised cosine	$\frac{4 \pi}{L}$	-0.0071L	-43dB

