
Review Periodic Signals Pure Delay Example Cascades Sum Summary

Lecture 17: Cascaded LSI Systems

Mark Hasegawa-Johnson
These slides are in the public domain

ECE 401: Signal and Image Analysis, Fall 2023



Review Periodic Signals Pure Delay Example Cascades Sum Summary

1 Review: Frequency Response and Fourier Series

2 Response of a Filter when the Input is Periodic

3 A Pure-Delay “Filter”

4 Example: Delaying a Square Wave

5 Cascaded LSI Systems

6 The Running-Sum Filter (Local Averaging)

7 Summary



Review Periodic Signals Pure Delay Example Cascades Sum Summary

Outline

1 Review: Frequency Response and Fourier Series

2 Response of a Filter when the Input is Periodic

3 A Pure-Delay “Filter”

4 Example: Delaying a Square Wave

5 Cascaded LSI Systems

6 The Running-Sum Filter (Local Averaging)

7 Summary



Review Periodic Signals Pure Delay Example Cascades Sum Summary

Review: Convolution

A convolution is exactly the same thing as a weighted local
average. We give it a special name, because we will use it
very often. It’s defined as:

y [n] =
∑
m

g [m]f [n −m] =
∑
m

g [n −m]f [m]

We use the symbol ∗ to mean “convolution:”

y [n] = g [n] ∗ f [n] =
∑
m

g [m]f [n −m] =
∑
m

g [n −m]f [m]
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Frequency Response

Tones in → Tones out

x [n] = e jωn → y [n] = G (ω)e jωn

x [n] = cos (ωn)→ y [n] = |G (ω)| cos (ωn + ∠G (ω))

x [n] = A cos (ωn + θ)→ y [n] = A|G (ω)| cos (ωn + θ + ∠G (ω))

where the Frequency Response is given by

G (ω) =
∑
m

g [m]e−jωm
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Review: Spectrum

The spectrum of x(t) is the set of frequencies, and their
associated phasors,

Spectrum (x(t)) = {(f−N , a−N), . . . , (f0, a0), . . . , (fN , aN)}

such that

x(t) =
N∑

k=−N
ake

j2πfk t
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Review: Fourier Series

One reason the spectrum is useful is that any periodic signal can
be written as a sum of cosines. Fourier’s theorem says that any
x(t) that is periodic, i.e.,

x(t + T0) = x(t)

can be written as

x(t) =
∞∑

k=−∞
Xke

j2πkF0t

which is a special case of the spectrum for periodic signals:
fk = kF0, and ak = Xk , and

F0 =
1

T0
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Review: Discrete-Time Fourier Series

A signal that’s periodic in discrete time also has a Fourier series. If
the signal is periodic with a period of N0 = T0Fs samples, then its
Fourier series is

x [n] =

N0−1∑
k=0

Xke
j2πkn/N0 =

(N0−1)/2∑
k=−N0/2

Xke
j2πkn/N0

and the Fourier analysis formula is

Xk =
1

N0

N0−1∑
n=0

x [n]e−j2πkn/N0
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Example: Spectrum of a Square Wave

For example, here’s an even-symmetric (x [n] = x [−n]), zero-DC
(
∑

n x [n] = 0), unit-amplitude (maxn |x [n]| = 1) square wave, with
a period of 11 samples:
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Spectrum of a Square Wave

The Fourier series coefficients of this square wave are

Xk =

{
2π
k (−1)

|k|−1
2 k odd, − 5 ≤ k ≤ 5

0 k even, − 5 ≤ k ≤ 5
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More about the phase spectrum

Notice that, for the phase spectrum of a square wave, the phase
spectrum is either ∠X [k] = 0 or ∠X [k] = π. That means that the
spectrum is real-valued, with no complex part:

Positive real: X [k] = |X [k]|
Negative real: X [k] = −|X [k]| = |X [k]|e jπ
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More about the phase spectrum

Having discovered that the square wave has a real-valued X [k], we
could just plot X [k] itself, instead of plotting its magnitude and
phase:
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Response of a Filter when the Input is Periodic

Now we’re ready to ask this question:

What is the output of a filter when the input, x [n], is periodic with
period N0?
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Response of a Filter when the Input is Periodic

1 Fourier Series: If the input is periodic, then we can write it as

x [n] =

(N0−1)/2∑
k=−N0/2

Xke
j2πkn/N0

2 Frequency Response: If the input is e jωn, then the output is

y [n] = H(ω)e jωn

3 Linearity (of convolution, and of frequency response): If
the input is x1[n] + x2[n], then the output is

y [n] = y1[n] + y2[n]



Review Periodic Signals Pure Delay Example Cascades Sum Summary

Response of a Filter when the Input is Periodic

Putting all those things together, if the input is

x [n] =

(N0−1)/2∑
k=−N0/2

Xke
j2πkn/N0

. . . then the output is

y [n] =

(N0−1)/2∑
k=−N0/2

XkH(kω0)e j2πkn/N0

. . . where ω0 = 2π
N0

is the fundamental frequency.
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A Pure-Delay “Filter”

One thing we can do to a signal is to just delay it, by n0 samples:

y [n] = x [n − n0]

Even this very simple operation can be written as a convolution:

y [n] = g [n] ∗ x [n]

where the “filter,” g [n], is just

g [n] = δ[n − n0] =

{
1 n = n0

0 otherwise
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Frequency Response of A Pure-Delay “Filter”

g [n] =

{
1 n = n0

0 otherwise

The frequency response is

G (ω) =
∑
m

g [m]e−jωm = e−jωn0
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Impulse Response of A Pure-Delay “Filter”

Here is the impulse response of a pure-delay “filter” (and the
magnitude and phase responses, which we’ll talk about next).
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Magnitude and Phase Response of A Pure-Delay “Filter”

G (ω) =
∑
m

g [m]e−jωm = e−jωn0

Notice that the magnitude and phase response of this filter are

|G (ω)| = 1

∠G (ω) = −ωn0

So, for example, if have an input of x [n] = cos(ωn), the output
would be

y [n] = |G (ω)| cos (ωn + ∠G (ω)) = cos (ωn − ωn0)
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Magnitude and Phase Response of A Pure-Delay “Filter”

Here are the magnitude and phase response of the pure delay filter.
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Spectrum of a Square Wave

Here are the Fourier series coefficients of a period-11,
even-symmetric, unit-amplitude, zero-mean square wave:

Xk =

{
2π
k (−1)

|k|−1
2 k odd, − 5 ≤ k ≤ 5

0 k even, − 5 ≤ k ≤ 5
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Response of a Filter when the Input is Periodic

And here’s what happens when we pass a periodic signal through a
filter g [n]:

x [n] =

(N0−1)/2∑
k=−N0/2

Xke
j2πkn/N0

y [n] =

(N0−1)/2∑
k=−N0/2

XkG (kω0)e j2πkn/N0

. . . where ω0 = 2π
N0

is the fundamental frequency.
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Spectrum: Delayed Square Wave

And here’s the result. This is the square wave, after being delayed
by the pure-delay filter:

You can see that magnitude’s unchanged, but phase is changed.
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Spectrum of a Delayed Square Wave

The Fourier series coefficients of a square wave, delayed by n0
samples, are

Yk =

{
2π
k (−1)

|k|−1
2 e−jkω0n0 k odd, − 5 ≤ k ≤ 5

0 k even, − 5 ≤ k ≤ 5

where kω0 = 2πk
N0

.
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Cascaded LSI Systems

What happens if we pass the input through two LSI systems, in
cascade?

y [n]HGx [n]
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Cascaded filters

Suppose I pass the signal through filter g [n], then pass it through
another filter, h[n]:

y [n] = h[n] ∗ (g [n] ∗ x [n]) ,

we get a signal y [n] whose spectrum is:

Y [k] = H(kω0)G (kω0)X [k]
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Convolution is Commutative

Notice that

Y [k] = H(kω0)G (kω0)X [k] = G (kω0)H(kω0)X [k]

and therefore:

y [n] = h[n] ∗ (g [n] ∗ x [n]) = g [n] ∗ (h[n] ∗ x [n])
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Convolution is Commutative

Since convolution is commutative, these two circuits compute
exactly the same output:

y [n]HGx [n]

y [n]GHx [n]
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Example: Differenced Square Wave

Suppose we define x [n] to be an 11-sample square wave, g [n] to be
a delay, and h[n] to be a first difference:

x [n] =


1 −2 ≤ n ≤ 2

−1
2 n = ±3

−1 4 ≤ n ≤ 7

x [n]
G−→ z [n] = x [n − 5]

z [n]
H−→ y [n] = z [n]− z [n − 1]
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Delayed Square Wave

y [n]Gx [n]

Here’s what we get if we just delay the square wave:
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Differenced Square Wave

y [n]Hx [n]

Here’s what we get if we just difference the square wave:
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Example: Differenced Delayed Square Wave

y [n]HGx [n]

Here’s what we get if we delay and then difference the square
wave:
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Example: Delayed Differenced Square Wave

y [n]GHx [n]

Here’s what we get if we difference and then delay the square
wave (hint: it’s exactly the same as the previous slide!!)
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Magnitude and Phase of Cascaded Frequency Responses

In general, when you cascade two LSI systems, the magnitudes
multiply:

|Yk | = |H(ω)||G (ω)||Xk |,

but the phases add:

∠Yk = ∠H(ω) + ∠G (ω) + ∠Xk

That’s because:

H(ω)G (ω) = |H(ω)|e j∠H(ω)|G (ω)|e j∠G(ω) = |H(ω)||G (ω)|e j(∠H(ω)+∠G(ω))
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Local Average Filters

Let’s go back to the local averaging filter. I want to define two
different types of local average: centered, and delayed.

Centered local average: This one averages
(
L−1
2

)
future

samples,
(
L−1
2

)
past samples, and x [n]:

yc [n] =
1

L

( L−1
2 )∑

m=−( L−1
2 )

x [n −m]

Delayed local average: This one averages x [n] and L− 1 of
its past samples:

yd [n] =
1

L

L−1∑
m=0

x [n −m]

Notice that yd [n] = yc
[
n −

(
L−1
2

)]
.
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Local Average Filters

We can write both of these as filters:

Centered local average:

yc [n] = fc [n] ∗ x [n]

fc [n] =

{
1
L −

(
L−1
2

)
≤ n ≤

(
L−1
2

)
0 otherwise

Delayed local average:

yd [n] = fd [n] ∗ x [n]

fd [n] =

{
1
L 0 ≤ n ≤ L− 1

0 otherwise
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Local Average Filters

Notice that fd [n] = fc
[
n −

(
L−1
2

)]
.
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The relationship between centered local average and
delayed local average

Suppose we define our pure delay filter,

g [n] = δ

[
n − L− 1

2

]
=

{
1 n = L−1

2

0 otherwise

Using g [n], here are lots of different ways we can write the
relationship between yd [n], yc [n], and x [n]:

yd [n] = fd [n] ∗ x [n]

yc [n] = fc [n] ∗ x [n]

yd [n] = g [n] ∗ yc [n] = g [n] ∗ fc [n] ∗ x [n]

fd [n] = g [n] ∗ fc [n]
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The relationship between centered local average and
delayed local average

Remember the frequency response of a pure delay filter:

G (ω) = e−jω( L−1
2 )

We have not yet figured out what Fc(ω) and Fd(ω) are. But
whatever they are, we know that

fd [n] = g [n] ∗ fc [n]

and therefore
Fd(ω) = e−jω( L−1

2 )Fc(ω)



Review Periodic Signals Pure Delay Example Cascades Sum Summary

The frequency response of a local average filter

Let’s find the frequency response of

fd [n] =

{
1
L 0 ≤ m ≤ L− 1

0 otherwise

The formula is
Fd(ω) =

∑
m

f [m]e−jωm,

so,

Fd(ω) =
L−1∑
m=0

1

L
e−jωm
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The frequency response of a local average filter

Fd(ω) =
L−1∑
m=0

1

L
e−jωm

This is just a standard geometric series,

L−1∑
m=0

am =
1− aL

1− a
,

so:

Fd(ω) =
1

L

(
1− e−jωL

1− e−jω

)
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The frequency response of a local average filter

We now have an extremely useful transform pair:

fd [n] =

{
1
L 0 ≤ m ≤ L− 1

0 otherwise
↔ Fd(ω) =

1

L

(
1− e−jωL

1− e−jω

)
Let’s attempt to convert that into polar form, so we can find
magnitude and phase response. Notice that both the numerator
and the denominator are subtractions of complex numbers, so we
might be able to use 2j sin(x) = e jx − e−jx for some x . Let’s try:

1

L

(
1− e−jωL

1− e−jω

)
=

1

L

e−jωL/2

e−jω/2

(
e jωL/2 − e−jωL/2

e jω/2 − e−jω/2

)

= e−jω( L−1
2 ) 1

L

(
2j sin(ωL/2)

2j sin(ω/2)

)
= e−jω( L−1

2 ) 1

L

(
sin(ωL/2)

sin(ω/2)

)
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The frequency response of a local average filter

Now we have Fd(ω) in almost magnitude-phase form:

fd [n] =

{
1
L 0 ≤ m ≤ L− 1

0 otherwise
↔ Fd(ω) =

(
sin(ωL/2)

L sin(ω/2)

)
e−jω( L−1

2 )

By the way, remember we discovered that

fd [n] = g [n] ∗ fc [n] ↔ Fd(ω) = e−jω( L−1
2 )Fc(ω)

Notice anything?



Review Periodic Signals Pure Delay Example Cascades Sum Summary

Dirichlet form

The textbook calls this function the “Dirichlet form:”

DL(ω) =
sin(ωL/2)

sin(ω/2)

That is, exactly, the frequency response of a centered local sum
filter:

dL[n] =

{
1 −

(
L−1
2

)
≤ n ≤

(
L−1
2

)
0 otherwise
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Dirichlet form

Here’s what it looks like:
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Dirichlet form

Since every local averaging filter is based on Dirichlet form, it’s
worth spending some time to understand it better.

DL(ω) =
sin(ωL/2)

sin(ω/2)

It’s equal to zero every time ωL/2 is a multiple of π. So

DL

(
2πk

L

)
= 0 for all integers k except k = 0

At ω = 0, the value of sin(ωL/2)
sin(ω/2) is undefined, but it’s posssible

to prove that limω→0DL(ω) = L. To make life easy, we’ll just
define it that way:

DEFINE: DL(0) = L
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Dirichlet form

Here’s what it looks like:
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Local averaging filter

Here’s what the centered local averaging filter looks like. Notice
that it’s just 1/L times the Dirichlet form:
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Summary: Behavior of Systems in General

Periodic inputs: If the input of an LSI system is periodic,

x [n] =

(N0−1)/2∑
k=−N0/2

Xke
j2πkn/N0

. . . then the output is

y [n] =

(N0−1)/2∑
k=−N0/2

XkH(kω0)e j2πkn/N0

Cascaded LTI Systems convolve their impulse responses,
equivalently, they multiply their frequency responses:

y [n] = h[n] ∗ g [n] ∗ x [n], Yk = H(kω0)G (kω0)Xk
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Summary: Types of LSI Systems

The Pure Delay Filter has |G (ω)| = 1, ∠G (ω) = −ωn0:

g [m] = δ[n − n0] ↔ G (ω) = e−jωn0

The Centered Local Averaging Filter is 1/L times the
Dirichlet form:

fc [n] =

{
1
L −

(
L−1
2

)
≤ n ≤

(
L−1
2

)
0 otherwise

↔ Fc(ω) =
sin(ωL/2)

L sin(ω/2)

The Delayed Local Averaging Filter is fc [n], delayed by half
of its length:

fd [n] =

{
1
L 0 ≤ n ≤ L− 1

0 otherwise
↔ Fd(ω) =

sin(ωL/2)

L sin(ω/2)
e−jω( L−1

2 )
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