Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Binar

 000
 000
 000
 000
 000
 000
 000

Lecture 10: DT Filtering of CT Signals

Mark Hasegawa-Johnson These slides are in the public domain.

ECE 401: Signal and Image Analysis, Fall 2023

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 2 DT Filtering of CT Signals
- 3 DT Filtering of Periodic CT Signals
- 4 DT Filtering of a Pure Tone
- 5 Rectangular Averager
- 6 Binary Differencer

 Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Binan

 •000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

- 2 DT Filtering of CT Signals
- 3 DT Filtering of Periodic CT Signals
- 4 DT Filtering of a Pure Tone
- 5 Rectangular Averager
- 6 Binary Differencer
- Conclusions

Sampling: Continuous Time \rightarrow Discrete Time

A signal is sampled by measuring its value once every T_s seconds:

$$x[n] = x(t = nT_s)$$

The spectrum of the DT signal has components at $\omega = \frac{2\pi f}{F_s}$, and also at every $2\pi \ell + \omega$ and $2\pi \ell - \omega$, for every integer ℓ . Aliasing occurs unless $|\omega| \leq \pi$.

 Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Binar

 0000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Interpolation: Discrete Time \rightarrow Continuous Time

A CT signal y(t) can be created from a DT signal y[n] by interpolation:

$$y(t) = \sum_{n=-\infty}^{\infty} y[n]p(t-nT_s)$$

- $p(t) = \text{rectangle} \Rightarrow \text{PWC interpolation}$
- $p(t) = triangle \Rightarrow PWL$ interpolation
- $p(t) = \operatorname{sinc}\left(\frac{\pi t}{T_s}\right) \Rightarrow$ perfectly bandlimited interpolation, y(t) has no spectral components above F_N

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Convolution (finite impulse response filtering) is a generalization of weighted local averaging:

$$y[n] = h[n] * x[n] \equiv \sum_{m} x[m]h[n-m] = \sum_{m} x[n-m]h[m]$$

- If all samples of *h*[*n*] are positive, then it's a weighted local averaging filter
- If the samples of h[n] are positive for n > 0 and negative for n < 0 (or vice versa), then it's a weighted local differencing filter

Review	DT Filtering of CT Signals	DT Filtering of Periodic CT Signals	DT Filtering of a Pure Tone	Rectangular Averager	
0000	000	0000000	0000	0000000	000

Outline

1 Review

- 2 DT Filtering of CT Signals
- 3 DT Filtering of Periodic CT Signals
- 4 DT Filtering of a Pure Tone
- 5 Rectangular Averager
- 6 Binary Differencer
- Conclusions

DT Filtering of CT Signals

$$x(t) \longrightarrow \boxed{A/D} \xrightarrow{x[n]} y[n] = h[n] * x[n] \xrightarrow{y[n]} D/A \longrightarrow y(t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Constraints:

- Assume that A/D and D/A use same F_s
- Assume $F_s \ge 2f_{\max}$
- Assume sinc interpolation

 Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Bina

 000
 00
 000
 000
 000
 000
 000

DT Filtering of CT Signals

- If *h*[*n*] is a local averager, what's the relationship of *y*(*t*) to *x*(*t*)?
- If h[n] is a local differencer, what's the relationship of y(t) to x(t)?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Review	DT Filtering of CT Signals	DT Filtering of Periodic CT Signals	DT Filtering of a Pure Tone	Rectangular Averager	
		0000000			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

- 2 DT Filtering of CT Signals
- 3 DT Filtering of Periodic CT Signals
- 4 DT Filtering of a Pure Tone
- 5 Rectangular Averager
- 6 Binary Differencer
- Conclusions

Review 0000	DT Filtering of CT Signals	DT Filtering of Periodic CT Signals	DT Filtering of a Pure Tone 0000	Rectangular Averager	Bina 000
Fou	rier Series				

To start with, let's assume x(t) is periodic and bandlimited, so:

$$x(t) = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} X_k e^{j2\pi k F_0 t}$$
$$x[n] = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} X_k e^{jk\omega_0 n}$$

Where the period $F_s T_0$ might or might not be an integer number of samples, but the signal is bandlimited to $\frac{(N-1)}{2}\omega_0 < \pi$.

 Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Binar

 000
 000
 000
 000
 000
 000
 000
 000

Spectrum of x(t)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Review	DT Filtering of CT Signals	DT Filtering of Periodic CT Signals	DT Filtering of a Pure Tone	Rectangular Averager	Bina
0000	000	0000000	0000	0000000	000

Spectrum of *x*[*n*]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Review DT Filtering of CT Signals DT Filtering of Periodic CT Signals DT Filtering of a Pure Tone Rectangular Averager Binar

Relationship of y[n] to x[n]

New fact, I haven't yet proven it to you: If the input to a convolution contains only frequencies $k\omega_0$, the output will also only have frequencies $k\omega_0$. Therefore the relationship between x[n] and y[n] is

$$x[n] = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} X_k e^{jk\omega_0 n}$$
$$y[n] = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} Y_k e^{jk\omega_0 n}$$

The relationship between X_k and Y_k can be almost anything; it depends on h[n] and k and ω_0 .

 Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Binar

 000
 000
 000
 000
 000
 000
 000
 000

Spectrum of y[n]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Review DT Filtering of CT Signals DT Filtering of Periodic CT Signals DT Filtering of a Pure Tone Rectangular Averager Binar

Spectrum of y(t)

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

æ.

 Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Binar

 0000
 000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000

DT Filtering of CT Signals

$$x(t) \xrightarrow{x[n]} y[n] = h[n] * x[n] \xrightarrow{y[n]} D/A \xrightarrow{\bullet} y(t)$$

So, from the input to output, the signals are:

$$\begin{aligned} x(t) &= \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} X_k e^{j2\pi kF_0 t}, \qquad x[n] = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} X_k e^{jk\omega_0 n} \\ y[n] &= \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} Y_k e^{jk\omega_0 n}, \qquad y(t) = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} Y_k e^{j2\pi kF_0 t} \end{aligned}$$

What is the relationship between Y_k and X_k ? Let's solve it in general, then do some examples.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Review	DT Filtering of CT Signals	DT Filtering of Periodic CT Signals	DT Filtering of a Pure Tone	Rectangular Averager	
			000		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

- 2 DT Filtering of CT Signals
- 3 DT Filtering of Periodic CT Signals
- 4 DT Filtering of a Pure Tone
- 5 Rectangular Averager
- 6 Binary Differencer
- 7 Conclusions

ReviewDT Filtering of CT SignalsDT Filtering of Periodic CT SignalsDT Filtering of a Pure ToneRectangular AveragerBinal000

DT Filtering of a Pure Tone

$$x(t) \longrightarrow \boxed{A/D} \xrightarrow{x[n]} y[n] = h[n] * x[n] \xrightarrow{y[n]} D/A \longrightarrow y(t)$$

Let's assume that x(t) is a pure-tone complex exponential at frequency $\omega \left[\frac{\text{radians}}{\text{sample}}\right] = \frac{2\pi \left[\frac{\text{radians}}{\text{cycle}}\right] f\left[\frac{\text{cycles}}{\text{second}}\right]}{F_s\left[\frac{\text{samples}}{\text{sample}}\right]}$:

$$x(t) = Xe^{j2\pi ft}$$
$$x[n] = Xe^{j\omega n}$$
$$y[n] = Ye^{j\omega n}$$
$$y(t) = Ye^{j2\pi ft}$$

Can we find the relationship between the two phasors Y and X?

ReviewDT Filtering of CT SignalsDT Filtering of Periodic CT SignalsDT Filtering of a Pure ToneRectangular AveragerBinal00

Relationship Between Y and X

Remember that y[n] = x[n] * h[n], i.e.,

$$y[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

What happens if we plug in $x[n] = Xe^{j\omega n}$?

$$y[n] = \sum_{m=-\infty}^{\infty} h[m] X e^{j\omega(n-m)}$$
$$= X e^{j\omega n} \sum_{m=-\infty}^{\infty} h[m] e^{-j\omega m}$$
$$= Y e^{j\omega n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Relationship Between Y and X

$$Y = X \sum_{m = -\infty}^{\infty} h[m] e^{-j\omega m}$$

The sum $\sum h[m]e^{-j\omega m}$ is called the **frequency response** of the system. We'll talk about it a lot over the next few weeks. For now, let's do some examples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Review	DT Filtering of CT Signals	DT Filtering of Periodic CT Signals	DT Filtering of a Pure Tone	Rectangular Averager	
				000000	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

1 Review

- 2 DT Filtering of CT Signals
- 3 DT Filtering of Periodic CT Signals
- 4 DT Filtering of a Pure Tone
- 5 Rectangular Averager
- 6 Binary Differencer

Conclusions

 Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Binar

 000
 000
 000
 000
 000
 000
 000

Rectangular Averager

$$y[n] = \sum_{m} h[m] \times [n-m]$$

Consider the case of the rectangular averager:

$$h[n] = \begin{cases} \frac{1}{N} & -\left(\frac{N-1}{2}\right) \le n \le \left(\frac{N-1}{2}\right) \\ 0 & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rectangular Averaging: Low-Frequency Cosine

When the input is low-frequency, the output of an averager is almost the same as the input:

 Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Binal

 0000
 000
 0000
 0000
 0000
 0000
 0000
 0000

Rectangular Averaging: High-Frequency Cosine

When the input is high-frequency, the system averages over almost one complete period, so the output is close to zero:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rectangular Averaging: General Case

Remember the general form for the frequency response:

$$Y = X \sum_{m=-\infty}^{\infty} h[m] e^{-j\omega m}$$
$$= \frac{X}{N} \sum_{m=-(N-1)/2}^{(N-1)/2} e^{-j\omega m}$$
$$= \frac{X}{N} \left(1 + 2 \sum_{m=1}^{(N-1)/2} \cos(\omega m) \right)$$

- If ω is very small, all terms are positive, so the output is large.
- If ω is larger, then the summation includes both positive and negative terms, so the output is small.

Spectral Plots: Rectangular Averager

The averager retains low-frequency components, but reduces high-frequency components:

▲ロト▲圖ト▲画ト▲画ト 画 のみで

 Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Binal

 000
 000
 000
 000
 000
 000
 000

Waveforms: Rectangular Averager

The averager tends to smooth out the waveform:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

1 Review

- 2 DT Filtering of CT Signals
- 3 DT Filtering of Periodic CT Signals
- 4 DT Filtering of a Pure Tone
- 5 Rectangular Averager
- 6 Binary Differencer

Conclusions

Binary Differencer

$$y[n] = \sum_{m} h[m]x[n-m]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consider the case of the binary differencer:

$$h[n] = \left\{egin{array}{cc} 1 & n=0\ -1 & n=1\ 0 & ext{otherwise} \end{array}
ight.$$

... so that y[n] = x[n] - x[n-1].

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Binary Differencer: Low-Frequency Cosine

When the input is low-frequency, the difference between neighboring samples is nearly zero:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Binary Differencer: High-Frequency Cosine

When the input is high-frequency, the difference between neighboring samples is large:

 Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Binar

 000
 000
 000
 000
 000
 000
 000

Binary Differencer: General Case

Remember the general form for the frequency response:

$$Y = X \sum_{m=-\infty}^{\infty} h[m] e^{-j\omega m}$$

= X (1 - e^{-j\omega})
= X (e^{j\omega/2} - e^{-j\omega/2}) e^{-j\omega/2}
= 2jX \sin\left(\frac{\omega}{2}\right) e^{-j\omega/2}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- If ω is very small, $\sin(\omega/2)$ is very small
- As $\omega
 ightarrow \pi$ (high frequencies), $\sin(\omega/2)
 ightarrow 1$

Spectral Plots: Binary Differencer

The binary differencer removes the 0Hz component, but keeps high frequencies:

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - の久で

Waveforms: Binary Differencer

The binary differencer removes the 0Hz component, and tends to emphasize "edges" in the waveform:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Review	DT Filtering of CT Signals	DT Filtering of Periodic CT Signals	DT Filtering of a Pure Tone	Rectangular Averager	

Outline

1 Review

- 2 DT Filtering of CT Signals
- 3 DT Filtering of Periodic CT Signals
- 4 DT Filtering of a Pure Tone
- 5 Rectangular Averager
- 6 Binary Differencer

 Review
 DT Filtering of CT Signals
 DT Filtering of Periodic CT Signals
 DT Filtering of a Pure Tone
 Rectangular Averager
 Bina

 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Conclusions

$$x(t) \xrightarrow{x[n]} y[n] = h[n] * x[n] \xrightarrow{y[n]} D/A \xrightarrow{\bullet} y(t)$$

If x(t) is periodic, then y(t) is also periodic with the same period but different Fourier Series coefficients:

$$\begin{aligned} x(t) &= \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} X_k e^{j2\pi kF_0 t}, \qquad x[n] = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} X_k e^{jk\omega_0 n} \\ y[n] &= \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} Y_k e^{jk\omega_0 n}, \qquad y(t) = \sum_{k=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} Y_k e^{j2\pi kF_0 t} \end{aligned}$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Conclusions

The relationship between the Fourier series coefficients is given by the frequency response of the system:

$$Y = X \sum_{m} h[m] e^{-j\omega m}$$

- A rectangular averager is a low-pass filter: low-frequency signals pass through, but high-frequency signals are averaged out.
- A binary differencer is a high-pass filter: high-frequency signals pass through, but low-frequency signals are differenced out, especially the OHz component.