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Sampling: Continuous Time → Discrete Time

A signal is sampled by measuring its value once every Ts seconds:

x [n] = x(t = nTs)

The spectrum of the DT signal has components at ω = 2πf
Fs

, and
also at every 2π`+ ω and 2π`− ω, for every integer `. Aliasing
occurs unless |ω| ≤ π.
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Interpolation: Discrete Time → Continuous Time

A CT signal y(t) can be created from a DT signal y [n] by
interpolation:

y(t) =
∞∑

n=−∞
y [n]p(t − nTs)

p(t) =rectangle ⇒ PWC interpolation

p(t) =triangle ⇒ PWL interpolation

p(t) = sinc
(
πt
Ts

)
⇒ perfectly bandlimited interpolation, y(t)

has no spectral components above FN
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Convolution

Convolution (finite impulse response filtering) is a generalization of
weighted local averaging:

y [n] = h[n] ∗ x [n] ≡
∑
m

x [m]h[n −m] =
∑
m

x [n −m]h[m]

If all samples of h[n] are positive, then it’s a weighted local
averaging filter

If the samples of h[n] are positive for n > 0 and negative for
n < 0 (or vice versa), then it’s a weighted local differencing
filter
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DT Filtering of CT Signals

y(t)D/Ay [n] = h[n] ∗ x [n]
y [n]

A/D
x [n]

x(t)

Constraints:

Assume that A/D and D/A use same Fs

Assume Fs ≥ 2fmax

Assume sinc interpolation
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DT Filtering of CT Signals

If h[n] is a local averager, what’s the relationship of y(t) to
x(t)?

If h[n] is a local differencer, what’s the relationship of y(t) to
x(t)?
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Fourier Series

To start with, let’s assume x(t) is periodic and bandlimited, so:

x(t) =

(N−1)
2∑

k=− (N−1)
2

Xke
j2πkF0t

x [n] =

(N−1)
2∑

k=− (N−1)
2

Xke
jkω0n

Where the period FsT0 might or might not be an integer number
of samples, but the signal is bandlimited to (N−1)

2 ω0 < π.
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Spectrum of x(t)
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Spectrum of x [n]
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Relationship of y [n] to x [n]

New fact, I haven’t yet proven it to you: If the input to a
convolution contains only frequencies kω0, the output will also
only have frequencies kω0. Therefore the relationship between x [n]
and y [n] is

x [n] =

(N−1)
2∑

k=− (N−1)
2

Xke
jkω0n

y [n] =

(N−1)
2∑

k=− (N−1)
2

Yke
jkω0n

The relationship between Xk and Yk can be almost anything; it
depends on h[n] and k and ω0.
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Spectrum of y [n]
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Spectrum of y(t)
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DT Filtering of CT Signals

y(t)D/Ay [n] = h[n] ∗ x [n]
y [n]

A/D
x [n]

x(t)

So, from the input to output, the signals are:

x(t) =

(N−1)
2∑

k=− (N−1)
2

Xke
j2πkF0t , x [n] =

(N−1)
2∑

k=− (N−1)
2

Xke
jkω0n

y [n] =

(N−1)
2∑

k=− (N−1)
2

Yke
jkω0n, y(t) =

(N−1)
2∑

k=− (N−1)
2

Yke
j2πkF0t

What is the relationship between Yk and Xk? Let’s solve it in
general, then do some examples.
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DT Filtering of a Pure Tone

y(t)D/Ay [n] = h[n] ∗ x [n]
y [n]

A/D
x [n]

x(t)

Let’s assume that x(t) is a pure-tone complex exponential at

frequency ω
[

radians
sample

]
=

2π
[

radians
cycle

]
f [ cycles

second ]
Fs [ samples

second ]
:

x(t) = Xe j2πft

x [n] = Xe jωn

y [n] = Ye jωn

y(t) = Ye j2πft

Can we find the relationship between the two phasors Y and X?
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Relationship Between Y and X

Remember that y [n] = x [n] ∗ h[n], i.e.,

y [n] =
∞∑

m=−∞
h[m]x [n −m]

What happens if we plug in x [n] = Xe jωn?

y [n] =
∞∑

m=−∞
h[m]Xe jω(n−m)

= Xe jωn
∞∑

m=−∞
h[m]e−jωm

= Ye jωn
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Relationship Between Y and X

Y = X
∞∑

m=−∞
h[m]e−jωm

The sum
∑

h[m]e−jωm is called the frequency response of the
system. We’ll talk about it a lot over the next few weeks. For now,
let’s do some examples.
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Rectangular Averager

y [n] =
∑
m

h[m]x [n −m]

Consider the case of the rectangular averager:

h[n] =

{
1
N −

(
N−1

2

)
≤ n ≤

(
N−1

2

)
0 otherwise
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Rectangular Averaging: Low-Frequency Cosine

When the input is low-frequency, the output of an averager is
almost the same as the input:
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Rectangular Averaging: High-Frequency Cosine

When the input is high-frequency, the system averages over almost
one complete period, so the output is close to zero:
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Rectangular Averaging: General Case

Remember the general form for the frequency response:

Y = X
∞∑

m=−∞
h[m]e−jωm

=
X

N

(N−1)/2∑
m=−(N−1)/2

e−jωm

=
X

N

1 + 2

(N−1)/2∑
m=1

cos(ωm)


If ω is very small, all terms are positive, so the output is large.

If ω is larger, then the summation includes both positive and
negative terms, so the output is small.
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Spectral Plots: Rectangular Averager

The averager retains low-frequency components, but reduces
high-frequency components:
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Waveforms: Rectangular Averager

The averager tends to smooth out the waveform:
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Binary Differencer

y [n] =
∑
m

h[m]x [n −m]

Consider the case of the binary differencer:

h[n] =


1 n = 0
−1 n = 1
0 otherwise

. . . so that y [n] = x [n]− x [n − 1].
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Binary Differencer: Low-Frequency Cosine

When the input is low-frequency, the difference between
neighboring samples is nearly zero:
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Binary Differencer: High-Frequency Cosine

When the input is high-frequency, the difference between
neighboring samples is large:



Review DT Filtering of CT Signals DT Filtering of Periodic CT Signals DT Filtering of a Pure Tone Rectangular Averager Binary Differencer Conclusions

Binary Differencer: General Case

Remember the general form for the frequency response:

Y = X
∞∑

m=−∞
h[m]e−jωm

= X
(
1− e−jω

)
= X

(
e jω/2 − e−jω/2

)
e−jω/2

= 2jX sin
(ω

2

)
e−jω/2

If ω is very small, sin(ω/2) is very small

As ω → π (high frequencies), sin(ω/2)→ 1
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Spectral Plots: Binary Differencer

The binary differencer removes the 0Hz component, but keeps high
frequencies:
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Waveforms: Binary Differencer

The binary differencer removes the 0Hz component, and tends to
emphasize “edges” in the waveform:
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Conclusions

y(t)D/Ay [n] = h[n] ∗ x [n]
y [n]

A/D
x [n]

x(t)

If x(t) is periodic, then y(t) is also periodic with the same period
but different Fourier Series coefficients:

x(t) =

(N−1)
2∑

k=− (N−1)
2

Xke
j2πkF0t , x [n] =

(N−1)
2∑

k=− (N−1)
2

Xke
jkω0n

y [n] =

(N−1)
2∑

k=− (N−1)
2

Yke
jkω0n, y(t) =

(N−1)
2∑

k=− (N−1)
2

Yke
j2πkF0t
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Conclusions

The relationship between the Fourier series coefficients is given by
the frequency response of the system:

Y = X
∑
m

h[m]e−jωm

A rectangular averager is a low-pass filter: low-frequency
signals pass through, but high-frequency signals are averaged
out.

A binary differencer is a high-pass filter: high-frequency
signals pass through, but low-frequency signals are differenced
out, especially the 0Hz component.
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