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How do you treat an image as a signal?

An RGB image is a signal in three dimensions: f [i , j , k] =
intensity of the signal in the i th row, j th column, and kth color.

f [i , j , k], for each (i , j , k), is either stored as an integer or a
floating point number:

Floating point: usually x ∈ [0, 1], so x = 0 means dark, x = 1
means bright.
Integer: usually x ∈ {0, . . . , 255}, so x = 0 means dark,
x = 255 means bright.

The three color planes are usually:

k = 0: Red
k = 1: Blue
k = 2: Green
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Local averaging

“Local averaging” means that we create an output image,
y [i , j , k], each of whose pixels is an average of nearby pixels
in f [i , j , k].

For example, if we average along the rows:

y [i , j , k] =
1

2M + 1

j+M∑
j ′=j−M

f [i , j ′, k]

If we average along the columns:

y [i , j , k] =
1

2M + 1

i+M∑
i ′=i−M

f [i ′, j , k]



Outline Averaging Weighted Convolution Differencing Weighted Edges Summary

Local averaging of a unit step

The top row are the averaging weights. If it’s a 7-sample local
average, (2M + 1) = 7, so the averaging weights are each

1
2M+1 = 1

7 . The middle row shows the input, f [n]. The bottom
row shows the output, y [n].
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Weighted local averaging

Suppose we don’t want the edges quite so abrupt. We could
do that using “weighted local averaging:” each pixel of
y [i , j , k] is a weighted average of nearby pixels in f [i , j , k],
with some averaging weights g [n].

For example, if we average along the rows:

y [i , j , k] =

j+M∑
m=j−M

g [j −m]f [i ,m, k]

If we average along the columns:

y [i , j , k] =
i+M∑

i ′=i−M
g [i −m]f [m, j , k]
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Weighted local averaging of a unit step

The top row are the averaging weights, g [n]. The middle row
shows the input, f [n]. The bottom row shows the output, y [n].
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Convolution

A convolution is exactly the same thing as a weighted local
average. We give it a special name, because we will use it
very often. It’s defined as:

y [n] =
∑
m

g [m]f [n −m] =
∑
m

g [n −m]f [m]

We use the symbol ∗ to mean “convolution:”

y [n] = g [n] ∗ f [n] =
∑
m

g [m]f [n −m] =
∑
m

g [n −m]f [m]
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Convolution

y [n] = g [n] ∗ f [n] =
∑

m g [m]f [n −m] =
∑

m g [n −m]f [m]

Here is the pseudocode for convolution:
1 For every output n:

1 Reverse g [m] in time, to create g [−m].
2 Shift it to the right by n samples, to create g [n −m].
3 For every m:

1 Multiply f [m]g [n −m].

4 Add them up to create y [n] =
∑

m g [n −m]f [m] for this
particular n.

2 Concatenate those samples together, in sequence, to make the
signal y .
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Convolution

by Brian Amberg, CC-SA 3.0,

https://commons.wikimedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif

https://commons.wikimedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif
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Convolution

by Brian Amberg, CC-SA 3.0,

https://commons.wikimedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif

https://commons.wikimedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif
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Convolution: how should you implement it?

Answer: use the numpy function, np.convolve. In general, if
numpy has a function that solves your problem, you are always
permitted to use it.
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Differencing is convolution, too

Suppose we want to compute the local difference:

y [n] = f [n]− f [n − 1]

We can do that using a convolution!

y [n] =
∑
m

f [n −m]h[m]

where

h[m] =


1 m = 0

−1 m = 1

0 otherwise
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Differencing as convolution
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Weighted differencing as convolution

The formula y [n] = f [n]− f [n − 1] is kind of noisy. Any noise
in f [n] or f [n − 1] means noise in the output.

We can make it less noisy by
1 First, compute a weighted average:

y [n] =
∑
m

f [m]g [n −m]

2 Then, compute a local difference:

z [n] = y [n]− y [n − 1] =
∑
m

f [m] (g [n −m]− g [n − 1−m])

This is exactly the same thing as convolving with

h[n] = g [n]− g [n − 1]
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A difference-of-Gaussians filter

The top row is a “difference of Gaussians” filter,
h[n] = g [n]− g [n − 1], where g [n] is a Gaussian. The middle row
is f [n], the last row is the output z [n].
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Difference-of-Gaussians filtering in both rows and columns
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Image gradient

Suppose we have an image f [i , j , k]. The 2D image gradient
is defined to be

~G [i , j , k] =

(
df

di

)
î +

(
df

dj

)
ĵ

where î is a unit vector in the i direction, ĵ is a unit vector in
the j direction.

We can approximate these using the difference-of-Gaussians
filter, hdog [n]:

df

di
≈ Gi = hdog [i ] ∗ f [i , j , k]

df

dj
≈ Gj = hdog [j ] ∗ f [i , j , k]
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The gradient is a vector

The image gradient, at any given pixel, is a vector. It points in the
direction of increasing intensity (this image shows “dark” =
greater intensity).

By CWeiske, CC-SA 2.5, https://commons.wikimedia.org/wiki/File:Gradient2.svg

https://commons.wikimedia.org/wiki/File:Gradient2.svg
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Magnitude of the image gradient

The image gradient, at any given pixel, is a vector.

It points in the direction in which intensity is increasing.

The magnitude of the vector tells you how fast intensity is
changing.

‖ ~G‖ =
√
G 2
i + G 2

j
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Magnitude of the gradient = edge detector
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Summary

y [n] = g [n] ∗ f [n] =
∑
m

g [m]f [n −m] =
∑
m

g [n −m]f [m]
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