Interpolation 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lecture 7: Interpolation

Mark Hasegawa-Johnson These slides are in the public domain.

ECE 401: Signal and Image Analysis, Fall 2023

2 Interpolation: Discrete-to-Continuous Conversion

Interpolation: Upsampling a signal

▲□▶▲圖▶▲≣▶▲≣▶ ■ めんの

Interpolation 00000

Outline

Interpolation: Discrete-to-Continuous Conversion

Interpolation: Upsampling a signal

Suppose you have some continuous-time signal, x(t), and you'd like to sample it, in order to store the sample values in a computer. The samples are collected once every $T_s = \frac{1}{F_s}$ seconds:

$$x[n] = x(t = nT_s)$$

Interpolation

Outline

2 Interpolation: Discrete-to-Continuous Conversion

Interpolation: Upsampling a signal

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How can we get x(t) back again?

We've already seen one method of getting x(t) back again: we can find all of the cosine components, and re-create the corresponding cosines in continuous time.

There is a more general method, that we can use for any signal, even signals that are not composed of pure tones. It involves multiplying each of the samples, x[n], by a short-time pulse, p(t), as follows:

$$y(t) = \sum_{n=-\infty}^{\infty} y[n]p(t-nT_s)$$

Sampling	Interpolation	Interpolation	Summary	
	00000000000			
Rectangular pulses				

For example, suppose that the pulse is just a rectangle,

$$p(t) = egin{cases} 1 & -rac{T_S}{2} \leq t < rac{T_S}{2} \ 0 & ext{otherwise} \end{cases}$$

Sampling	Interpolation	Interpolation	Summary
00	0000000000	00000	00
Rectangular pu	lses = Piece-wise co	nstant interpolation	n

The result is a piece-wise constant interpolation of the digital signal:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Sampling	Interpolation	Interpolation	Summary
00	800000000000	00000	00

Triangular pulses

The rectangular pulse has the disadvantage that y(t) is discontinuous. We can eliminate the discontinuities by using a triangular pulse:

$$p(t) = egin{cases} 1 - rac{|t|}{T_S} & -T_S \leq t < T_S \ 0 & ext{otherwise} \end{cases}$$

) 9 ()

The result is a piece-wise linear interpolation of the digital signal:

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Sampling	Interpolation	Interpolation	Summary	
00	00000000000	00000	00	
Cubic spline pulses				

The triangular pulse has the disadvantage that, although y(t) is continuous, its first derivative is discontinuous. We can eliminate discontinuities in the first derivative by using a cubic-spline pulse:

$$p(t) = \begin{cases} 1 - \frac{3}{2} \left(\frac{|t|}{T_S}\right)^2 + \frac{1}{2} \left(\frac{|t|}{T_s}\right)^3 & 0 \le |t| \le T_S \\ -\frac{3}{2} \left(\frac{|t| - 2T_s}{T_S}\right)^2 \left(\frac{|t| - T_s}{T_S}\right) & T_S \le |t| \le 2T_S \\ 0 & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sampling	Interpolation	Interpolation	Summary
00	000000000000	00000	00
Cubic spline pu	ses		

The triangular pulse has the disadvantage that, although y(t) is continuous, its first derivative is discontinuous. We can eliminate discontinuities in the first derivative by using a cubic-spline pulse:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The result is a piece-wise cubic interpolation of the digital signal:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sinc pulses

The cubic spline has no discontinuities, and no slope discontinuities, but it still has discontinuities in its second derivative and all higher derivatives. Can we fix those? The answer: yes! The pulse we need is the inverse transform of an ideal lowpass filter, the sinc.

Sampling	Interpolation	Interpolation	Summary
00	○○○○○○○○○●○	00000	00
Sinc pulses			

We can reconstruct a signal that has no discontinuities in any of its derivatives by using an ideal sinc pulse:

$$p(t) = \frac{\sin(\pi t/T_S)}{\pi t/T_S}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The result is an ideal bandlimited interpolation:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Outline

Review: Sampling

Interpolation: Discrete-to-Continuous Conversion

3 Interpolation: Upsampling a signal

④ Summary

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Changing the sampling rate of a signal

Suppose we have an audio signal (x[n]) sampled at 11025 samples/second, but we really want to play it back at 44100 samples second. We can do that by creating a new signal, y[n], at M = 4 times the sampling rate of x[n]:

 $y[n] = \begin{cases} x[n/M] & n = \text{integer multiple of } M \\ \text{interpolated value} & \text{otherwise} \end{cases}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Upsampling

We split this process into two steps. First, **upsampling** means that we just insert zeros between the samples of x[n]:

$$u[n] = \begin{cases} x[n/M] & n = \text{integer multiple of } M \\ 0 & \text{otherwise} \end{cases}$$

Sampling	Interpolation	Interpolation	Summary
00	00000000000	00000	00
Interpolation			

Second, we generate the missing samples by interpolation:

$$y[n] = \sum_{m=-\infty}^{\infty} u[m]p[n-m]$$

=
$$\begin{cases} x[n/M] & n = \text{integer multiple of } M \\ \text{interpolated value} & \text{otherwise} \end{cases}$$

The second line of the equality holds if

$$p[n] = \begin{cases} 1 & n = 0 \\ 0 & n = \text{nonzero integer multiple of } M \\ \text{anything otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Interpolation Kernels

All of these interpolation kernels satisfy the condition on the previous slide:

Outline

Interpolation: Discrete-to-Continuous Conversion

Interpolation: Upsampling a signal

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

- Piece-wise constant interpolation = interpolate using a rectangle
- Piece-wise linear interpolation = interpolate using a triangle
- Cubic-spline interpolation = interpolate using a spline
- Ideal interpolation = interpolate using a sinc