
Sampling Interpolation Interpolation Summary

Lecture 7: Interpolation

Mark Hasegawa-Johnson
These slides are in the public domain.

ECE 401: Signal and Image Analysis, Fall 2023

Sampling Interpolation Interpolation Summary

1 Review: Sampling

2 Interpolation: Discrete-to-Continuous Conversion

3 Interpolation: Upsampling a signal

4 Summary

Sampling Interpolation Interpolation Summary

Outline

1 Review: Sampling

2 Interpolation: Discrete-to-Continuous Conversion

3 Interpolation: Upsampling a signal

4 Summary

Sampling Interpolation Interpolation Summary

How to sample a continuous-time signal

Suppose you have some continuous-time signal, x(t), and you’d
like to sample it, in order to store the sample values in a computer.
The samples are collected once every Ts = 1

Fs
seconds:

x [n] = x(t = nTs)

Sampling Interpolation Interpolation Summary

Outline

1 Review: Sampling

2 Interpolation: Discrete-to-Continuous Conversion

3 Interpolation: Upsampling a signal

4 Summary

Sampling Interpolation Interpolation Summary

How can we get x(t) back again?

We’ve already seen one method of getting x(t) back again: we can
find all of the cosine components, and re-create the corresponding
cosines in continuous time.
There is a more general method, that we can use for any signal,
even signals that are not composed of pure tones. It involves
multiplying each of the samples, x [n], by a short-time pulse, p(t),
as follows:

y(t) =
∞∑

n=−∞
y [n]p(t − nTs)

Sampling Interpolation Interpolation Summary

Rectangular pulses

For example, suppose that the pulse is just a rectangle,

p(t) =

{
1 −TS

2 ≤ t < TS
2

0 otherwise

Sampling Interpolation Interpolation Summary

Rectangular pulses = Piece-wise constant interpolation

The result is a piece-wise constant interpolation of the digital
signal:

Sampling Interpolation Interpolation Summary

Triangular pulses

The rectangular pulse has the disadvantage that y(t) is
discontinuous. We can eliminate the discontinuities by using a
triangular pulse:

p(t) =

{
1− |t|TS

−TS ≤ t < TS

0 otherwise

Sampling Interpolation Interpolation Summary

Triangular pulses = Piece-wise linear interpolation

The result is a piece-wise linear interpolation of the digital signal:

Sampling Interpolation Interpolation Summary

Cubic spline pulses

The triangular pulse has the disadvantage that, although y(t) is
continuous, its first derivative is discontinuous. We can eliminate
discontinuities in the first derivative by using a cubic-spline pulse:

p(t) =

1− 3

2

(
|t|
TS

)2
+ 1

2

(
|t|
Ts

)3
0 ≤ |t| ≤ TS

−3
2

(
|t|−2Ts

TS

)2 (|t|−Ts

TS

)
TS ≤ |t| ≤ 2TS

0 otherwise

Sampling Interpolation Interpolation Summary

Cubic spline pulses

The triangular pulse has the disadvantage that, although y(t) is
continuous, its first derivative is discontinuous. We can eliminate
discontinuities in the first derivative by using a cubic-spline pulse:

Sampling Interpolation Interpolation Summary

Cubic spline pulses = Piece-wise cubic interpolation

The result is a piece-wise cubic interpolation of the digital signal:

Sampling Interpolation Interpolation Summary

Sinc pulses

The cubic spline has no discontinuities, and no slope
discontinuities, but it still has discontinuities in its second
derivative and all higher derivatives. Can we fix those?
The answer: yes! The pulse we need is the inverse transform of an
ideal lowpass filter, the sinc.

Sampling Interpolation Interpolation Summary

Sinc pulses

We can reconstruct a signal that has no discontinuities in any of
its derivatives by using an ideal sinc pulse:

p(t) =
sin(πt/TS)

πt/TS

Sampling Interpolation Interpolation Summary

Sinc pulse = ideal bandlimited interpolation

The result is an ideal bandlimited interpolation:

Sampling Interpolation Interpolation Summary

Outline

1 Review: Sampling

2 Interpolation: Discrete-to-Continuous Conversion

3 Interpolation: Upsampling a signal

4 Summary

Sampling Interpolation Interpolation Summary

Changing the sampling rate of a signal

Suppose we have an audio signal (x [n]) sampled at 11025
samples/second, but we really want to play it back at 44100
samples second. We can do that by creating a new signal, y [n], at
M = 4 times the sampling rate of x [n]:

y [n] =

{
x [n/M] n = integer multiple of M
interpolated value otherwise

Sampling Interpolation Interpolation Summary

Upsampling

We split this process into two steps. First, upsampling means that
we just insert zeros between the samples of x [n]:

u[n] =

{
x [n/M] n = integer multiple of M
0 otherwise

Sampling Interpolation Interpolation Summary

Interpolation

Second, we generate the missing samples by interpolation:

y [n] =
∞∑

m=−∞
u[m]p[n −m]

=

{
x [n/M] n = integer multiple of M
interpolated value otherwise

The second line of the equality holds if

p[n] =

1 n = 0
0 n = nonzero integer multiple of M
anything otherwise

Sampling Interpolation Interpolation Summary

Interpolation Kernels

All of these interpolation kernels satisfy the condition on the
previous slide:

Sampling Interpolation Interpolation Summary

Outline

1 Review: Sampling

2 Interpolation: Discrete-to-Continuous Conversion

3 Interpolation: Upsampling a signal

4 Summary

Sampling Interpolation Interpolation Summary

Summary

Piece-wise constant interpolation = interpolate using a
rectangle

Piece-wise linear interpolation = interpolate using a triangle

Cubic-spline interpolation = interpolate using a spline

Ideal interpolation = interpolate using a sinc

	Review: Sampling
	Interpolation: Discrete-to-Continuous Conversion
	Interpolation: Upsampling a signal
	Summary

