ECE 401 Signal and Image Analysis Homework 5

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: 10/30/2023; Due: 11/8/2023
Reading: DSP First Chapter 8

Problem 5.1

Consider the signal $x[n]=\delta[n]+\delta[n-2]$. Plot the magnitude DTFT, $|X(\omega)|$, of this signal, for $0 \leq \omega<2 \pi$. Draw circles on your plot to show the frequency samples $X[k]$ for a 4-point DFT.

Solution:

$$
\begin{aligned}
X(\omega) & =1+e^{-2 j \omega} \\
& =e^{-j \omega}\left(e^{j \omega}+e^{-j \omega}\right) \\
& =e^{-j \omega} 2 \cos (\omega)
\end{aligned}
$$

So

$$
|X(\omega)|=2|\cos (\omega)|
$$

The frequency samples corresponding to X_{k} are at the frequencies $\omega_{k}=\frac{k \pi}{2}$, and have values of

$$
|X[k]|= \begin{cases}1 & k=0,2 \\ 0 & k=1,3\end{cases}
$$

Problem 5.2

In this problem, we will repeat Hamming's famous calculation, that resulted in the Hamming window. Consider a slightly modified, even-symmetric raised-cosine window,

$$
w_{C}[n]=\left((1-a)+a \cos \left(\frac{2 \pi n}{N}\right)\right) w_{R}[n]
$$

where a is an arbitrary constant, whose value has not yet been determined, and $w_{R}[n]$ is

$$
w_{R}[n]= \begin{cases}1 & -M \leq n \leq M \\ 0 & \text { otherwise }\end{cases}
$$

and the total length of the window is $N=2 M+1$. Recall that the DTFT of an even-symmetric rectangular window is

$$
W_{R}(\omega)=D_{N}(\omega)=\frac{\sin (\omega N / 2)}{\sin (\omega / 2)}
$$

(a) Use the linearity and frequency-shift properties of the DTFT to find $W_{C}(\omega)$, the DTFT of $w_{C}[n]$.

Solution:

$$
\begin{aligned}
w_{C}[n] & =\left((1-a)+a \cos \left(\frac{2 \pi n}{N}\right)\right) w_{R}[n] \\
& =(1-a) w_{R}[n]+\frac{a}{2} e^{j \frac{2 \pi n}{N}} w_{R}[n]+\frac{a}{2} e^{-j \frac{2 \pi n}{N}} w_{R}[n]
\end{aligned}
$$

Using the linearity and frequency-shift properties of the DTFT, we see that the DTFT is

$$
W_{C}(\omega)=(1-a) D_{N}(\omega)+\frac{a}{2} D_{N}\left(\omega-\frac{2 \pi}{N}\right)+D_{N}\left(\omega+\frac{2 \pi}{N}\right)
$$

(b) Sketch $W_{C}(\omega)$, for $0 \leq \omega \leq \frac{10 \pi}{N}$. Draw circles at the frequencies that would be sampled by an N-point DFT. Find the values of $W_{C}[k]$ for all k in the range $0 \leq k \leq N-1$, as functions of a and N.

Solution: The DTFT should look like a Dirichlet function, but with its main lobe twice as wide as a normal Dirichlet function. The frequency samples at $\omega_{k}=\frac{2 \pi k}{N}$ have the values

$$
W_{C}[k]= \begin{cases}(1-a) N & k=0 \\ \frac{a N}{2} & k=1, N-1 \\ 0 & \text { otherwise }\end{cases}
$$

(c) Find $W_{C}\left(\frac{5 \pi}{N}\right)$ in terms of a and N, and then find the value of a that zeros it out, $W_{C}\left(\frac{5 \pi}{N}\right)=0$.

Note: in order to find the value of $W_{C}\left(\frac{5 \pi}{N}\right)$, you will want to take advantage of the fact that, for small enough values of k,

$$
\frac{\sin (k \pi / 2)}{\sin (k \pi / 2 N)} \approx \frac{\sin (k \pi / 2)}{k \pi / 2 N}= \begin{cases} \pm \frac{2 N}{k \pi} & k \text { odd } \\ 0 & k \text { even and nonzero }\end{cases}
$$

Solution:

$$
W_{C}\left(\frac{5 \pi}{N}\right)=\left(\frac{(1-a) 2 N}{5 \pi}-\frac{a 2 N}{6 \pi}-\frac{a 2 N}{14 \pi}\right)
$$

In order to zero it out, we need to find the value of a such that

$$
0=\frac{2(1-a)}{5}-\frac{a}{3}-\frac{a}{7}
$$

Which gives us

$$
1=a\left(1+\frac{5}{6}+\frac{5}{14}\right)
$$

or $a=0.4565217$. If we approximate this to 2 significant figures (i.e., if we tolerate an error of up to 0.01 , which is -40 dB), the approximation would be $a \approx 0.46$.

