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Problem 3.1

In MP3, one of the filters you’ll create is a local averaging filter. A local averaging filter produces an
output y[n], at time n, which is the average of the previous N samples of x[m]:

y[n] =

∞∑
m=−∞

h[m]x[n−m] (3.1-1)

h[m] =

{
1
N 0 ≤ m ≤ N − 1

0 otherwise
(3.1-2)

(a) First, consider what happens if x[m] is a pure tone with a period of N0 = 2π
ω0

, an amplitude of A, and
a phase of θ:

x[n] = A cos (ω0n− θ)

Suppose that the averaging window, N , is exactly an integer multiple of N0. For example, suppose
that N = 3N0. Draw a picture of x[n] as a function of n, and shade in the regions that would be added
together by the summation in Eq. (3.1-1) in order to compute y[0]. Argue based on your figure (with
no calculations at all) that y[0] = 0.

Solution: The picture should show that we are adding together three complete periods of the cosine
up through, and including, the sample x[0]. Every period of the cosine has a positive section and a
negative section. When we average these two sections, they cancel each other out.

(b) Adding up the samples of a cosine is easy when N is an integer multiple of N0, but hard otherwise. It’s
actually much easier to add the samples of a complex exponential, because we can use the standard
geometric series formula (https://en.wikipedia.org/wiki/Geometric_series#Formula). Use that
formula to find y[N − 1] when

x[n] = ejω0n

Your result should have the form y[0] = (1 − a)/(1 − b) for some complex-valued constants, a and b,
that depend on π, N , and ω0, but not on m or n.

Solution:

y[0] =
1

N

(
1 − e−jω0N

1 − e−jω0

)

1

https://en.wikipedia.org/wiki/Geometric_series#Formula
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Problem 3.2

Another of the filters you’ll create in MP3 is a backward-difference filter. A backward-difference filter is
one of several different ways of approximating a first-derivative:

y[n] =

∞∑
m=−∞

h[m]x[n−m] (3.2-1)

h[m] =


1 m = 0

−1 m = 1

0 otherwise

(3.2-2)

(a) First, consider what happens if x[m] is a pure tone with a period of T0 = 2π
ω0

, an amplitude of A, and
a phase of θ:

x[n] = A cos (ω0n− θ) (3.2-3)

Plug Eq. (3.2-3) into Eq. (3.2-1), then use the following trigonometric identity and the following
approximation to discover in exactly what way the first-difference operator approximates a derivative:

−2 sin(a) sin(b) = cos(a+ b) − cos(a− b)

sin(b) ≈ b if b is small

In order to apply the approximation, you can assume that ω0 is a small number.

Solution: Plugging Eq. (3.2-3) into Eq. (3.2-1) gives

y[n] = x[n] − x[n− 1]

= A cos (ω0n− θ) −A cos (ω0(n− 1) − θ)

We can apply the trig identity if we set

a = ω0(n− 0.5) − θ

b = 0.5ω0

which gives
y[n] = −2A sin(0.5ω0) sin(ω0(n− 0.5) + θ)

Applying the approximation gives

y[n] ≈ −Aω0 sin(ω0(n− 0.5) + θ),

which is what you would get if you differentiated A cos(ω0(n− 0.5) + θ) with respect to n.

(b) Let’s try the same thing with a complex exponential. Plug the following value of x[n] into Eq. (3.2-1)

x[n] = ejω0n,

then assume that ω0 is a small number, and simplify using the approximation

eφ ≈ 1 + φ if φ is small

in order to get something that looks like dx[n]/dn.

Solution:

y[n] = x[n] − n[n− 1]

= ejω0n − ejω0(n−1)

= ejω0n(1 − e−jω0)

≈ jω0e
−jω0n

which is dx[n]/dn.


