ECE 401 Signal and Image Analysis Homework 3

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: 9/25/2023; Due: 10/4/2023
Reading: DSP First Chapter 5

Problem 3.1

In MP3, one of the filters you'll create is a local averaging filter. A local averaging filter produces an output $y[n]$, at time n, which is the average of the previous N samples of $x[m]$:

$$
\begin{align*}
& y[n]=\sum_{m=-\infty}^{\infty} h[m] x[n-m] \tag{3.1-1}\\
& h[m]= \begin{cases}\frac{1}{N} & 0 \leq m \leq N-1 \\
0 & \text { otherwise }\end{cases} \tag{3.1-2}
\end{align*}
$$

(a) First, consider what happens if $x[m]$ is a pure tone with a period of $N_{0}=\frac{2 \pi}{\omega_{0}}$, an amplitude of A, and a phase of θ :

$$
x[n]=A \cos \left(\omega_{0} n-\theta\right)
$$

Suppose that the averaging window, N, is exactly an integer multiple of N_{0}. For example, suppose that $N=3 N_{0}$. Draw a picture of $x[n]$ as a function of n, and shade in the regions that would be added together by the summation in Eq. (3.1-1) in order to compute $y[0]$. Argue based on your figure (with no calculations at all) that $y[0]=0$.

Solution: The picture should show that we are adding together three complete periods of the cosine up through, and including, the sample $x[0]$. Every period of the cosine has a positive section and a negative section. When we average these two sections, they cancel each other out.
(b) Adding up the samples of a cosine is easy when N is an integer multiple of N_{0}, but hard otherwise. It's actually much easier to add the samples of a complex exponential, because we can use the standard geometric series formula (https://en.wikipedia.org/wiki/Geometric_series\#Formula). Use that formula to find $y[N-1]$ when

$$
x[n]=e^{j \omega_{0} n}
$$

Your result should have the form $y[0]=(1-a) /(1-b)$ for some complex-valued constants, a and b, that depend on π, N, and ω_{0}, but not on m or n.

Solution:

$$
y[0]=\frac{1}{N}\left(\frac{1-e^{-j \omega_{0} N}}{1-e^{-j \omega_{0}}}\right)
$$

Problem 3.2

Another of the filters you'll create in MP3 is a backward-difference filter. A backward-difference filter is one of several different ways of approximating a first-derivative:

$$
\begin{align*}
& y[n]=\sum_{m=-\infty}^{\infty} h[m] x[n-m] \tag{3.2-1}\\
& h[m]= \begin{cases}1 & m=0 \\
-1 & m=1 \\
0 & \text { otherwise }\end{cases} \tag{3.2-2}
\end{align*}
$$

(a) First, consider what happens if $x[m]$ is a pure tone with a period of $T_{0}=\frac{2 \pi}{\omega_{0}}$, an amplitude of A, and a phase of θ :

$$
\begin{equation*}
x[n]=A \cos \left(\omega_{0} n-\theta\right) \tag{3.2-3}
\end{equation*}
$$

Plug Eq. (3.2-3) into Eq. (3.2-1), then use the following trigonometric identity and the following approximation to discover in exactly what way the first-difference operator approximates a derivative:

$$
\begin{aligned}
-2 \sin (a) \sin (b) & =\cos (a+b)-\cos (a-b) \\
\sin (b) & \approx b \text { if } b \text { is small }
\end{aligned}
$$

In order to apply the approximation, you can assume that ω_{0} is a small number.
Solution: Plugging Eq. (3.2-3) into Eq. (3.2-1) gives

$$
\begin{aligned}
y[n] & =x[n]-x[n-1] \\
& =A \cos \left(\omega_{0} n-\theta\right)-A \cos \left(\omega_{0}(n-1)-\theta\right)
\end{aligned}
$$

We can apply the trig identity if we set

$$
\begin{aligned}
a & =\omega_{0}(n-0.5)-\theta \\
b & =0.5 \omega_{0}
\end{aligned}
$$

which gives

$$
y[n]=-2 A \sin \left(0.5 \omega_{0}\right) \sin \left(\omega_{0}(n-0.5)+\theta\right)
$$

Applying the approximation gives

$$
y[n] \approx-A \omega_{0} \sin \left(\omega_{0}(n-0.5)+\theta\right)
$$

which is what you would get if you differentiated $A \cos \left(\omega_{0}(n-0.5)+\theta\right)$ with respect to n.
(b) Let's try the same thing with a complex exponential. Plug the following value of $x[n]$ into Eq. 3.2-1)

$$
x[n]=e^{j \omega_{0} n}
$$

then assume that ω_{0} is a small number, and simplify using the approximation

$$
e^{\phi} \approx 1+\phi \text { if } \phi \text { is small }
$$

in order to get something that looks like $d x[n] / d n$.

Solution:

$$
\begin{aligned}
y[n] & =x[n]-n[n-1] \\
& =e^{j \omega_{0} n}-e^{j \omega_{0}(n-1)} \\
& =e^{j \omega_{0} n}\left(1-e^{-j \omega_{0}}\right) \\
& \approx j \omega_{0} e^{-j \omega_{0} n}
\end{aligned}
$$

which is $d x[n] / d n$.

