ECE 401 Signal and Image Analysis Homework 2

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: 9/4/2023; Due: 9/13/2023
Reading: DSP First pp. 12-34, 50-58, 61-71

Problem 2.1

Suppose that

$$
v(t)=2 \cos (2 \pi 880 t)+2 \sin (2 \pi 1320 t)
$$

What is the fundamental frequency? What are the Fourier series coefficients, V_{k} ?

Problem 2.2

Suppose that $x(t)$ is a square wave with a period of T_{0}, and with the following definition:

$$
x(t)= \begin{cases}\frac{1}{2} & -\frac{T_{0}}{4}<t<\frac{T_{0}}{4} \\ -\frac{1}{2} & \frac{T_{0}}{4}<t<\frac{3 T_{0}}{4}\end{cases}
$$

We showed in class that the Fourier coefficients of this square wave are

$$
X_{k}= \begin{cases}0 & k \text { even } \\ \frac{(-1)^{(|k|-1) / 2}}{\pi k} & k \text { odd }\end{cases}
$$

Remember that the real-valued coefficients correspond to a Fourier series where all of the components are cosines. That makes sense, because the signal has even symmetry $(x(t)=x(-t))$, just like a cosine.

Suppose that we delay the signal by one quarter period, to produce the signal

$$
y(t)= \begin{cases}\frac{1}{2} & 0<t<\frac{T_{0}}{2} \\ -\frac{1}{2} & \frac{T_{0}}{2}<t<T_{0}\end{cases}
$$

Notice that $y(t)$ has odd symmetry $(y(t)=-y(-t))$, just like a sine wave. In that case, we might speculate that the Fourier seires expansion will be composed entirely of sine waves, i.e., the Fourier series coefficients, Y_{k}, will all be imaginary numbers.

Use the time-delay property of the spectrum (from lecture 3) to find out what happens to X_{k} when $x(t)$ is delayed by exactly one quarter period.

Problem 2.3

Suppose that $z(t)$ is a triangle wave with a period of T_{0}, and with the following definition:

$$
z(t)= \begin{cases}\frac{t}{2}-\frac{T_{0}}{4} & 0<t<\frac{T_{0}}{2} \\ -\frac{t}{2}+\frac{3 T_{0}}{4} & \frac{T_{0}}{2}<t<T_{0}\end{cases}
$$

Notice that this signal is exactly the anti-derivative of the signal $y(t)$ from problem (1), i.e., $y(t)=d z / d t$. Use the differentiation property of the spectrum (from lecture 3) in order to find the Fourier series coefficients Z_{k}.

Problem 2.4

Suppose that a violin is playing the note A4 $(440 \mathrm{~Hz})$, but our recording quality is bad, so we only get the first two harmonics:

$$
x(t)=\sum_{k=-2}^{2} a_{k} e^{j 2 \pi k 440 t}
$$

Suppose we measure the spectrum, and find it to be

$$
\{(-880,0.01),(-440,1),(0,0),(440,1),(880,0.01)\}
$$

In order to improve the balance a little, we try differentiating the tone. Our differentiator also imposes a delay and a DC offset, though, so what we get is

$$
y(t)=\frac{d x(t-0.001)}{d t}+1.5
$$

Find the spectrum of $y(t)$.

