ECE 401 Signal Processing
Fall 2023

EXAM 3

Wednesday, December 13, 2023, 7:00-10:00pm

- This is a CLOSED BOOK exam.
- You are permitted two sheets of handwritten notes, 8.5×11.
- Calculators and computers are not permitted.
- Do not simplify explicit numerical expressions. The expression " $e^{-5} \cos (3)$ " is a MUCH better answer than "-0.00667".
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will appear on Gradescope at exactly $7: 00 \mathrm{pm}$; you will need to photograph and upload your answers by exactly 10:00pm.
- There will be a total of 200 points in the exam (9 problems). Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Name: \qquad
netid: \qquad

Phasors

$$
A \cos (2 \pi f t+\theta)=\Re\left\{A e^{j \theta} e^{j 2 \pi f t}\right\}=\frac{1}{2} e^{-j \theta} e^{-j 2 \pi f t}+\frac{1}{2} e^{j \theta} e^{j 2 \pi f t}
$$

Fourier Series

$$
\begin{aligned}
\text { Analysis: } X_{k} & =\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k t / T_{0}} d t \\
\text { Synthesis: } x(t) & =\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}
\end{aligned}
$$

Sampling and Interpolation:

$$
\begin{aligned}
& x[n]=x\left(t=\frac{n}{F_{s}}\right) \\
& f_{a}=\min \left(f \bmod F_{s},-f \bmod F_{s}\right) \\
& z_{a}= \begin{cases}z & f \bmod F_{s}<-f \bmod F_{s} \\
z^{*} & f \bmod F_{s}>-f \bmod F_{s}\end{cases} \\
& y(t)=\sum_{n=-\infty}^{\infty} y[n] p\left(t-n T_{s}\right)
\end{aligned}
$$

Convolution

$$
h[n] * x[n]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

Frequency Response and DTFT

$$
\begin{aligned}
H(\omega) & =\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n} \\
h[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} H(\omega) e^{j \omega n} d \omega \\
h[n] * \cos (\omega n) & =|H(\omega)| \cos (\omega n+\angle H(\omega))
\end{aligned}
$$

Rectangular \& Hamming Windows; Ideal LPF

$$
\begin{gathered}
w_{R}[n]=\left\{\begin{array}{ll}
1 & 0 \leq n \leq N-1 \\
0 & \text { otherwise }
\end{array} \leftrightarrow W_{R}(\omega)=e^{-\frac{j \omega(N-1)}{2} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)}}\right. \\
w_{H}[n]=0.54-0.46 \cos \left(\frac{2 \pi n}{N-1}\right) w_{R}[n] \leftrightarrow W_{H}(\omega)=0.54 W_{R}(\omega)-0.23 W_{R}\left(\omega-\frac{2 \pi}{N-1}\right)-0.23 W_{R}\left(\omega+\frac{2 \pi}{N-1}\right) \\
h_{\text {ideal }}[n]=\frac{\omega_{c}}{\pi} \operatorname{sinc}\left(\omega_{c} n\right) \leftrightarrow H_{\text {ideal }}(\omega)= \begin{cases}1 & |\omega|<\omega_{c} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Discrete Fourier Transform
Analysis: $X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}$
Synthesis: $x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}$

Z Transform Pairs

$$
\begin{aligned}
b_{k} z^{-k} & \leftrightarrow b_{k} \delta[n-k] \\
\frac{1}{1-a z^{-1}} & \leftrightarrow a^{n} u[n] \\
\frac{1}{\left(1-e^{-\sigma_{1}-j \omega_{1}} z^{-1}\right)\left(1-e^{-\sigma_{1}+j \omega_{1}} z^{-1}\right)} & \leftrightarrow \frac{1}{\sin \left(\omega_{1}\right)} e^{-\sigma_{1} n} \sin \left(\omega_{1}(n+1)\right) u[n]
\end{aligned}
$$

Notch Filter

$$
\begin{aligned}
H(z) & =\frac{\left(1-e^{j \omega_{1}} z^{-1}\right)\left(1-e^{-j \omega_{1}} z^{-1}\right)}{\left(1-a e^{j \omega_{1}} z^{-1}\right)\left(1-a e^{-j \omega_{1}} z^{-1}\right)} \\
\mathrm{BW} & =-2 \ln (a)
\end{aligned}
$$

1. (23 points) Suppose $x[n]$ is a real-valued signal that is nonzero only for $0 \leq n \leq N-1$, where N is an even number, and suppose $X(\omega)$ is its known DTFT. Suppose $y[n]$ is the periodic repetition of $x[n]$, i.e.,

$$
y[n]=x\left[\langle n\rangle_{N}\right],
$$

where $\langle n\rangle_{N}$ means " n modulo N." Notice that $y[n]$ can be written as

$$
y[n]=\sum_{k=0}^{N / 2} A_{k} \cos \left(\frac{2 \pi k n}{N}+\theta_{k}\right)
$$

Find A_{k} and θ_{k} in terms of $X(\omega), k$, and N. Notice that your answers for $k=0$ and $k=\frac{N}{2}$ will be different than your answers for other values of k.

Solution:

$$
\begin{aligned}
A_{k} & = \begin{cases}\frac{1}{N}\left|X\left(\frac{2 \pi k}{N}\right)\right| & k=0, \frac{N}{2} \\
\frac{2}{N}\left|X\left(\frac{2 \pi k}{N}\right)\right| & \text { otherwise }\end{cases} \\
\theta_{k} & =\angle X\left(\frac{2 \pi k}{N}\right)
\end{aligned}
$$

2. (23 points) The system \mathcal{R} computes the ratio of two consecutive samples:

$$
\mathcal{R}: x[n] \rightarrow y[n]=\frac{x[n]}{x[n-1]}
$$

(a) Is \mathcal{R} linear? Prove your answer.

Solution:

$$
\begin{aligned}
& x_{1}[n] \rightarrow y_{1}[n]=\frac{x_{1}[n]}{x_{1}[n-1]} \\
& x_{2}[n] \rightarrow y_{2}[n]=\frac{x_{2}[n]}{x_{2}[n-1]} \\
& x_{3}[n]=x_{1}[n]+x_{2}[n] \rightarrow y_{3}[n]=\frac{x_{1}[n]+x_{2}[n]}{x_{1}[n-1]+x_{2}[n-1]} \\
& y_{1}[n]+y_{2}[n]=\frac{x_{1}[n]}{x_{1}[n-1]}+\frac{x_{2}[n]}{x_{2}[n-1]} \neq y_{3}[n]
\end{aligned}
$$

So it is not linear.
(b) If \mathcal{R} time-invariant? Prove your answer.

Solution:

$$
\left.\begin{array}{rl}
x_{1}[n] & \rightarrow y_{1}[n]
\end{array}=\frac{x_{1}[n]}{x_{1}[n-1]}\right]+y_{2}[n]=\frac{x_{1}[n-m]}{x_{1}[n-m-1]}=y_{1}[n-m] .
$$

So it is time-invariant.
3. (22 points) Suppose $h[n]$ is a length- L FIR lowpass filter with the following form:

$$
h[n]= \begin{cases}\left(\frac{\omega_{c}}{\pi}\right) \operatorname{sinc}\left(\omega_{c}\left(n-\left(\frac{L-1}{2}\right)\right)\right) & 0 \leq n \leq L-1 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose the sampling rate is $F_{s}=44000$ samples/second, and you want the transition band to be no more than 100 Hz wide. What should L be?

Solution: L must be at least 440 samples.
4. (22 points) Consider the following signal:

$$
x[n]= \begin{cases}1 & 0 \leq n \leq 45 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose $X[k]$ is the length-64 DFT of $x[n]$. Find $X[k]$ as a function of k.

Solution:

$$
X[k]=e^{-j \frac{2 \pi k 45}{2 \times 64}} \frac{\sin \left(\frac{2 \pi k 46}{2 \times 64}\right)}{\sin \left(\frac{\pi k}{64}\right)}
$$

5. (22 points) Consider the following signal:

$$
x[n]= \begin{cases}1 & 0 \leq n \leq 45 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose $X[k]$ is the length-64 DFT of $x[n], Y[k]=X^{2}[k]$, and $y[n]$ is the 64 -point inverse DFT of $Y[k]$. Find $y[n]$ as a function of n.

Solution:

$$
y[n]= \begin{cases}28 & 0 \leq n \leq 26 \\ n+1 & 26 \leq n \leq 45 \\ 91-n & 45 \leq n \leq 63\end{cases}
$$

6. (22 points) Suppose you have a 30-minute recording, $x[n]$, that you want to filter using a lowpass filter $h[n]$ with a length of $L=2011$. The most efficient way to find $H[k]$, the 4096-point DFT of $h[n]$, then compute

$$
\begin{aligned}
x_{t}[n] & = \begin{cases}x[n+t M] & 0 \leq n \leq M-1 \\
0 & \text { otherwise }\end{cases} \\
X_{t}[k] & =\sum_{n=0}^{M-1} x_{t}[n] e^{-j \frac{2 \pi k n}{4096}} \\
Y_{t}[k] & =X_{k}[k] H[k] \\
y_{t}[n] & =\frac{1}{4096} \sum_{k=0}^{4095} Y_{t}[k] e^{j \frac{2 \pi k n}{4096}} \\
y[n] & =\sum_{t} y_{t}[n-t M]
\end{aligned}
$$

Using the algorithm shown above, what is the largest value of M that will result in a value of $y[n]$ equal to $h[n] * x[n]$?

Solution: M must be less than or equal to $N-L+1=2086$.
7. (22 points) Suppose $H(z)$ is given by

$$
H(z)=\frac{1-0.9 z^{-1}}{\left(1-0.4 z^{-1}\right)\left(1+0.4 z^{-1}\right)}
$$

What is $h[n]$?

Solution:

$$
h[n]=-\left(\frac{5}{8}\right)(0.4)^{n} u[n]+\left(\frac{13}{8}\right)(-0.4)^{n} u[n]
$$

8. (22 points) Suppose you have a signal sampled at $F_{s}=44,000$ samples/second, and you want to filter it to eliminate a narrowband noise signal at 1000 Hz , with a 3 dB bandwidth of 100 Hz . Specify a filter $H(z)$ that will accomplish this task.

Solution:

$$
H(z)=\frac{\left(1-e^{j \frac{\pi}{22}} z^{-1}\right)\left(1-e^{-j \frac{\pi}{22}} z^{-1}\right)}{\left(1-e^{-\frac{\pi}{440}+j \frac{\pi}{22}} z^{-1}\right)\left(1-e^{-\frac{\pi}{440}-j \frac{\pi}{22}} z^{-1}\right)}
$$

9. (22 points) Consider the filter

$$
y[n]=x[n]-a_{1} y[n-1]-a_{2} y[n-2]
$$

The impulse response of this filter is $h[n]=\frac{1}{\sin \left(\omega_{1}\right)} e^{-\sigma_{1} n} \sin \left(\omega_{1}(n+1)\right) u[n]$. Use the quadratic formula $\left(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)$ to write explicit formulas for σ_{1} and ω_{1} in terms of a_{1} and a_{2}. You may assume that $a_{2}>a_{1}^{2} / 4$.

Solution: The roots are

$$
\begin{aligned}
z_{1}, z_{2} & =\frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{2}}}{2} \\
& =e^{-\sigma_{1} \pm j \omega_{1}}
\end{aligned}
$$

So

$$
\begin{aligned}
& \sigma_{1}=\Re\left\{\ln \left(\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{2}}}{2}\right)\right\} \\
& \omega_{1}=\Im\left\{\ln \left(\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{2}}}{2}\right)\right\}
\end{aligned}
$$

Alternate solution:

$$
\left.\begin{array}{l}
z_{1} z_{2}=e^{-2 \sigma_{1}} \\
=\left(\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{2}}}{2}\right)\left(\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{2}}}{2}\right) \\
=\frac{1}{4}\left(a_{1}^{2}-\left(a_{1}^{2}-4 a_{2}\right)\right)=a_{2} \\
\Rightarrow \sigma_{1}=-\frac{1}{2} \ln a_{2} \\
z_{1}+z_{2}
\end{array}\right)=2 e^{-\sigma_{1}} \cos \left(\omega_{1}\right) ~ 子 \begin{aligned}
\cos \left(\omega_{1}\right) & =-\frac{a_{1}}{2} e^{\sigma_{1}} \\
& =-\frac{a_{1}}{2 \sqrt{a_{2}}} \\
\omega_{1} & =\cos ^{-1}\left(-\frac{a_{1}}{2 \sqrt{a_{2}}}\right)
\end{aligned}
$$

THIS PAGE IS SCRATCH PAPER.

Page 13

