ECE 401 Signal Processing
Fall 2022

EXAM 3

Wednesday, December 14, 2022, 7:00-10:00pm

- This is a CLOSED BOOK exam.
- You are permitted two sheets of handwritten notes, 8.5×11.
- Calculators and computers are not permitted.
- Do not simplify explicit numerical expressions. The expression " $e^{-5} \cos (3)$ " is a MUCH better answer than "-0.00667".
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will appear on Gradescope at exactly $7: 00 \mathrm{pm}$; you will need to photograph and upload your answers by exactly 10:00pm.
- There will be a total of 200 points in the exam (9 problems). Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Name: \qquad
netid: \qquad

Phasors

$$
A \cos (2 \pi f t+\theta)=\Re\left\{A e^{j \theta} e^{j 2 \pi f t}\right\}=\frac{1}{2} e^{-j \theta} e^{-j 2 \pi f t}+\frac{1}{2} e^{j \theta} e^{j 2 \pi f t}
$$

Fourier Series

$$
\begin{aligned}
\text { Analysis: } X_{k} & =\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k t / T_{0}} d t \\
\text { Synthesis: } x(t) & =\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}
\end{aligned}
$$

Sampling and Interpolation:

$$
\begin{aligned}
& x[n]=x\left(t=\frac{n}{F_{s}}\right) \\
& f_{a}=\min \left(f \bmod F_{s},-f \bmod F_{s}\right) \\
& z_{a}= \begin{cases}z & f \bmod F_{s}<-f \bmod F_{s} \\
z^{*} & f \bmod F_{s}>-f \bmod F_{s}\end{cases} \\
& y(t)=\sum_{n=-\infty}^{\infty} y[n] p\left(t-n T_{s}\right)
\end{aligned}
$$

Convolution

$$
h[n] * x[n]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

Frequency Response and DTFT

$$
\begin{aligned}
H(\omega) & =\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n} \\
h[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} H(\omega) e^{j \omega n} d \omega \\
h[n] * \cos (\omega n) & =|H(\omega)| \cos (\omega n+\angle H(\omega))
\end{aligned}
$$

Rectangular \& Hamming Windows; Ideal LPF

$$
\begin{gathered}
w_{R}[n]=\left\{\begin{array}{ll}
1 & 0 \leq n \leq N-1 \\
0 & \text { otherwise }
\end{array} \leftrightarrow W_{R}(\omega)=e^{-\frac{j \omega(N-1)}{2} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)}}\right. \\
w_{H}[n]=0.54-0.46 \cos \left(\frac{2 \pi n}{N-1}\right) w_{R}[n] \leftrightarrow W_{H}(\omega)=0.54 W_{R}(\omega)-0.23 W_{R}\left(\omega-\frac{2 \pi}{N-1}\right)-0.23 W_{R}\left(\omega+\frac{2 \pi}{N-1}\right) \\
h_{\text {ideal }}[n]=\frac{\omega_{c}}{\pi} \operatorname{sinc}\left(\omega_{c} n\right) \leftrightarrow H_{\text {ideal }}(\omega)= \begin{cases}1 & |\omega|<\omega_{c} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Discrete Fourier Transform
Analysis: $X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}$
Synthesis: $x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}$

Z Transform Pairs

$$
\begin{aligned}
b_{k} z^{-k} & \leftrightarrow b_{k} \delta[n-k] \\
\frac{1}{1-a z^{-1}} & \leftrightarrow a^{n} u[n] \\
\frac{1}{\left(1-e^{-\sigma_{1}-\mathrm{J} \omega_{1}} z^{-1}\right)\left(1-e^{-\sigma_{1}+\mathrm{J} \omega_{1}} z^{-1}\right)} & \leftrightarrow \frac{1}{\sin \left(\omega_{1}\right)} e^{-\sigma_{1} n} \sin \left(\omega_{1}(n+1)\right) u[n]
\end{aligned}
$$

1. (25 points) Suppose we have a continuous-time signal $x(t)$, given by

$$
x(t)=(3+2 j) e^{-j 12 \pi t / T_{0}}+(5-j) e^{-j 6 \pi t / T_{0}}+(5+j) e^{j 6 \pi t / T_{0}}+(3-2 j) e^{j 12 \pi t / T_{0}}
$$

(a) Let's multiply $x(t)$ by the cosine of $4 \pi t / T_{0}$, and integrate over one period:

$$
A=\int_{0}^{T_{0}} x(t) \cos \left(\frac{4 \pi t}{T_{0}}\right) d t
$$

What is A ?

Solution:

$$
\begin{aligned}
A & =\int_{0}^{T_{0}} x(t)\left(\frac{e^{j 4 \pi t / T_{0}}+e^{-j 4 \pi t / T_{0}}}{2}\right) d t \\
& =\int_{0}^{T_{0}}\left(\sum_{k} X_{k} e^{j \frac{2 \pi k t}{T_{0}}}\right)\left(\frac{e^{j 4 \pi t / T_{0}}+e^{-j 4 \pi t / T_{0}}}{2}\right) d t \\
& =\frac{T_{0}}{2}\left(X_{2}+X_{-2}\right) \\
& =0
\end{aligned}
$$

(b) Suppose we multiply, instead, by the cosine of $6 \pi t / T_{0}$, and integrate over one period:

$$
B=\int_{0}^{T_{0}} x(t) \cos \left(\frac{6 \pi t}{T_{0}}\right) d t
$$

What is B ?

Solution:

$$
\begin{aligned}
B & =\int_{0}^{T_{0}} x(t)\left(\frac{e^{j 6 \pi t / T_{0}}+e^{-j 6 \pi t / T_{0}}}{2}\right) d t \\
& =\int_{0}^{T_{0}}\left(\sum_{k} X_{k} e^{j \frac{2 \pi k t}{T_{0}}}\right)\left(\frac{e^{j 6 \pi t / T_{0}}+e^{-j 6 \pi t / T_{0}}}{2}\right) d t \\
& =\frac{T_{0}}{2}\left(X_{3}+X_{-3}\right) \\
& =\frac{T_{0}}{2}((5-j)+(5+j)) \\
& =5 T_{0}
\end{aligned}
$$

(c) Continuing with the same $x(t)$: suppose we sample $x(t)$ with a sampling period of $T=T_{0} / 8$, thus

$$
y[n]=\left.x(t)\right|_{t=n T}
$$

The resulting $y[n]$ is periodic with a period of 8 samples, and with a discrete-time Fourier series of

$$
y[n]=\sum_{k=-3}^{3} Y_{k} e^{j \frac{2 \pi k n}{8}}
$$

Find the values of Y_{k}, for $-3 \leq k \leq 3$.

Solution:

$$
\begin{aligned}
x[n] & =(3+2 j) e^{-j 12 \pi n T / T_{0}}+(5-j) e^{-j 6 \pi n T / T_{0}}+(5+j) e^{j 6 \pi n T / T_{0}}+(3-2 j) e^{j 12 \pi n T / T_{0}} \\
& =(3+2 j) e^{-j 12 \pi n / 8}+(5-j) e^{-j 6 \pi n / 8}+(5+j) e^{j 6 \pi n / 8}+(3-2 j) e^{j 12 \pi n / 8} \\
& =(3+2 j) e^{j 4 \pi n / 8}+(5-j) e^{-j 6 \pi n / 8}+(5+j) e^{j 6 \pi n / 8}+(3-2 j) e^{-j 4 \pi n / 8}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
Y_{0}=Y_{1}=Y_{-1} & =0 \\
Y_{2} & =3+2 j \\
Y_{-2} & =3-2 j \\
Y_{3} & =5+j \\
Y_{-3} & =5-j
\end{aligned}
$$

2. (20 points) Consider a linear shift-invariant system with the following impulse response:

$$
h[n]= \begin{cases}(0.9)^{n} & n \geq 0 \\ 0 & n<0\end{cases}
$$

(a) Is this system stable? Why or why not?

Solution: Yes, because $\sum_{n=-\infty}^{\infty}|x[n]|=\frac{1}{1-0.9}$, which is finite.
(b) Suppose that $y[n]=h[n] * x[n]$, where

$$
x[n]= \begin{cases}1 & 0 \leq n \leq 9 \\ 0 & \text { otherwise }\end{cases}
$$

Use convolution to find $y[n]$. You may find it useful to know that $\sum_{n=0}^{L-1} a^{n}=\frac{1-a^{L}}{1-a}$.
Solution: When $n \leq 9$,

$$
\begin{aligned}
y[n] & =\sum_{m=0}^{n}(0.9)^{n-m} \\
& =(0.9)^{n} \sum_{m=0}^{n}(0.9)^{-m} \\
& =(0.9)^{n} \sum_{m=0}^{n}\left(\frac{10}{9}\right)^{m} \\
& =(0.9)^{n} \frac{1-\left(\frac{10}{9}\right)^{n+1}}{1-\left(\frac{10}{9}\right)} \\
& =\frac{(0.9)^{n}-\left(\frac{1}{0.9}\right)}{1-\left(\frac{1}{0.9}\right)}
\end{aligned}
$$

When $n \geq 10$,

$$
\begin{aligned}
y[n] & =\sum_{m=0}^{9}(0.9)^{n-m} \\
& =(0.9)^{n} \sum_{m=0}^{9}(0.9)^{-m} \\
& =(0.9)^{n} \frac{1-\left(\frac{10}{9}\right)^{10}}{1-\left(\frac{10}{9}\right)}
\end{aligned}
$$

Thus

$$
y[n]= \begin{cases}0 & n<0 \\ (0.9)^{n} \frac{1-\left(\frac{10}{9}\right)^{n+1}}{1-\left(\frac{10}{9}\right)} & 0 \leq n \leq 9 \\ (0.9)^{n} \frac{1-\left(\frac{10}{9}\right)^{10}}{1-\left(\frac{10}{9}\right)} & 10 \leq n\end{cases}
$$

3. (25 points) A linear shift-invariant system has the following frequency response:

$$
H(\omega)=e^{-5 j \omega}\left(1+\frac{1}{2} \cos \omega\right)
$$

(a) Suppose that $y[n]=h[n] * x[n]$, where

$$
x[n]=3 \sin \left(\frac{\pi n}{6}\right)
$$

What is $y[n]$?

Solution:

$$
y[n]=3\left(1+\frac{1}{2} \cos (\pi / 6)\right) \sin \left(\frac{\pi(n-5)}{6}\right)
$$

(b) What is the impulse response, $h[n]$, of this system?

Solution:

$$
h[n]=\frac{1}{4} \delta[n-4]+\delta[n-5]+\frac{1}{4} \delta[n-6]
$$

4. (20 points) Suppose you want an FIR bandpass filter with a length of $N=1024$, with cutoff frequencies $\omega_{\mathrm{LO}}=0.46 \pi$ and $\omega_{\mathrm{HI}}=0.48 \pi$, and with little stopband ripple. Find an impulse response $h[n]$ that meets these requirements.

Solution: The solution is the difference of two ideal lowpass filters, shifted by an odd number of half-samples (e.g., $\frac{1023}{2}$), then windowed so that it is symmetric and has 1024 samples (e.g., $0 \leq n \leq 1023$). To minimize stop-band ripple, it should be windowed by some tapered window, thus:

$$
h[n]=w[n]\left(0.48 \operatorname{sinc}\left(0.48 \pi\left(n-\frac{1023}{2}\right)\right)-0.46 \operatorname{sinc}\left(0.46 \pi\left(n-\frac{1023}{2}\right)\right)\right)
$$

where $w[n]$ is a tapered window such as a Hamming, Hann, or Bartlett window, e.g.,

$$
w[n]= \begin{cases}0.54-0.46 \cos \left(\frac{2 \pi n}{1023}\right) & 0 \leq n \leq 1023 \\ 0 & \text { otherwise }\end{cases}
$$

5. (25 points) Consider the signal

$$
x[n]=\cos \left(\frac{\pi n}{100}\right)
$$

(a) What is the 128 -sample DFT, $X[k]$, of this signal? Be sure to consider windowing effects.

Solution:

$$
\begin{gathered}
w[n] x[n]=\frac{1}{2} w[n] e^{j \pi n / 100}+\frac{1}{2} w[n] e^{-j \pi n / 100} \\
\operatorname{DTFT}\{w[n] x[n]\}=\frac{1}{2} W\left(\omega-\frac{\pi}{100}\right)+\frac{1}{2} W\left(\omega+\frac{\pi}{100}\right),
\end{gathered}
$$

where $w[n]$ is a rectangular window, so

$$
\begin{gathered}
W(\omega)=e^{-j \omega \frac{127}{2}} \frac{\sin (64 \omega)}{\sin (\omega / 2)} \\
X[k]=\left.\operatorname{DTFT}\{w[n] x[n]\}\right|_{\omega=\frac{2 \pi k}{128}} \\
=\frac{1}{2} W\left(\frac{2 \pi k}{128}-\frac{\pi}{100}\right)+\frac{1}{2} W\left(\frac{2 \pi k}{128}+\frac{\pi}{100}\right)
\end{gathered}
$$

(b) Suppose you want to construct the following periodic signal:

$$
y[n]=\cos \left(\frac{\pi(n-128 \ell)}{100}\right), \quad 128 \ell \leq n<128(\ell+1), \quad \text { for all } \ell
$$

You can create this signal using the following Fourier series:

$$
y[n]=\sum_{k=0}^{127} Y_{k} e^{j \frac{2 \pi k n}{128}}
$$

Notice that there is a relationships between Y_{k} and the DFT coefficients, $X[k]$, that you computed in part (a) of this problem. Find Y_{k} in terms of $X[k]$.

Solution:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}} \\
Y_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} y[n] e^{-j \frac{2 \pi k n}{N}} \\
& =\frac{1}{N} X[k] \\
& =\frac{1}{128} X[k]
\end{aligned}
$$

6. (25 points) Suppose you have a very long signal, $x[n]$, that you want to filter to compute $y[n]=h[n] * x[n]$. This can be done using the following sequence of steps:

$$
\begin{align*}
& H[k]=\sum_{n=0}^{N-1} h[n] e^{-j \frac{2 \pi k n}{N}} \tag{1}\\
& x_{\ell}[n]= \begin{cases}x[n+\ell M] & 0 \leq n \leq M-1, \text { for all } \ell \\
0 & \text { otherwise }\end{cases} \tag{2}\\
& X_{\ell}[k]=\sum_{n=0}^{N-1} x_{\ell}[n] e^{-j \frac{2 \pi k n}{N}} \tag{3}\\
& Y_{\ell}[k]=H[k] X_{\ell}[k] \tag{4}\\
& y_{\ell}[n]=\frac{1}{N} \sum_{k=0}^{N-1} Y_{\ell}[k] e^{j \frac{2 \pi k n}{N}} \tag{5}\\
& y[n]=\sum_{\ell=-\infty}^{\infty} y_{\ell}[n-\ell M] \tag{6}
\end{align*}
$$

(a) Suppose $h[n]$ is 129 samples long. Find values of M and N such that the algorithm in Eqs. (1) through (6) gives the same result as $y[n]=h[n] * x[n]$. There are many different correct answers; you only need to find one correct answer.

Solution: Any pair of values such that $N \geq L+M-1$ is a valid answer. For example, you could say that $M=128$ and $N=256$.
(b) Suppose $x[n]=\cos (0.08 \pi n)$, and $h[n]=\delta[n-126]$. Find $x_{\ell}[n]$ and $y_{\ell}[n]$ in terms of ℓ, M, and n.

Solution:

$$
\begin{aligned}
& x_{\ell}[n]= \begin{cases}\cos (0.08 \pi(n+\ell M)) & 0 \leq n \leq M-1, \text { for all } \ell \\
0 & \text { otherwise }\end{cases} \\
y_{\ell}[n] & =h[n] \circledast x_{\ell}[n] \\
& =x_{\ell}\left[\langle n-126\rangle_{N}\right] \\
& = \begin{cases}\cos (0.08 \pi(n+\ell M-126)) & \begin{array}{l}
126 \leq n \leq M+125, \text { for all } \ell \\
0
\end{array} \\
\text { otherwise }\end{cases}
\end{aligned}
$$

7. (20 points) Suppose that

$$
H(z)=\frac{1}{1-0.9 e^{j \pi / 6} z^{-1}}+\frac{1}{1-0.9 e^{-j \pi / 6} z^{-1}}
$$

Find the pole(s) and zero(s) of $H(z)$.

Solution:

$$
\begin{aligned}
H(z) & =\frac{\left(1-0.9 e^{j \pi / 6} z^{-1}\right)+\left(1-0.9 e^{-j \pi / 6} z^{-1}\right)}{\left(1-0.9 e^{j \pi / 6} z^{-1}\right)\left(1-0.9 e^{-j \pi / 6} z^{-1}\right)} \\
& =\frac{2-1.8 \cos (\pi / 6) z^{-1}}{\left(1-0.9 e^{j \pi / 6} z^{-1}\right)\left(1-0.9 e^{-j \pi / 6} z^{-1}\right)} \quad=2 \frac{1-0.9 \cos (\pi / 6) z^{-1}}{\left(1-0.9 e^{j \pi / 6} z^{-1}\right)\left(1-0.9 e^{-j \pi / 6} z^{-1}\right)}
\end{aligned}
$$

This has one zero, r_{1}, and two poles, p_{1} and p_{2} :

$$
\begin{aligned}
& r_{1}=0.9 \cos (\pi / 6)=0.45 \sqrt{3} \\
& p_{1}=0.9 e^{j \pi / 6} \\
& p_{2}=0.9 e^{-j \pi / 6}
\end{aligned}
$$

8. (20 points) Consider a notch filter with zeros at $r_{1}=e^{j 0.47 \pi}$ and $r_{2}=e^{-j 0.47 \pi}$, and with poles at $p_{1}=0.999 e^{j 0.47 \pi}$ and $p_{2}=0.999 e^{-j 0.47 \pi}$.
(a) What is the 3 dB bandwidth of the notch, expressed in radians per sample?

Solution: The bandwidth is $2 \sigma=-2 \ln (0.999)$.
(b) This filter can be implemented as

$$
y[n]=x[n]+b_{1} x[n-1]+b_{2} x[n-2]-a_{1} y[n-1]-a_{2} y[n-2]
$$

Find b_{1}, b_{2}, a_{1}, and a_{2}.

Solution:

$$
\begin{aligned}
H(z) & =\frac{\left(1-e^{j 0.47 \pi} z^{-1}\right)\left(1-e^{-j 0.47 \pi} z^{-1}\right)}{\left(1-0.999 e^{j 0.47 \pi} z^{-1}\right)\left(1-0.999 e^{-j 0.47 \pi} z^{-1}\right)} \\
& =\frac{1-2 \cos (0.47 \pi) z^{-1}+z^{-2}}{1-1.998 \cos (0.47 \pi) z^{-1}+(0.999)^{2} z^{-2}} \\
& =\frac{1+b_{1} z^{-1}+b_{2} z^{-2}}{1+a_{1} z^{-1}+a_{2} z^{-2}}
\end{aligned}
$$

So,

$$
\begin{aligned}
& b_{1}=-2 \cos (0.47 \pi) \\
& b_{2}=1 \\
& a_{1}=-1.998 \cos (0.47 \pi) \\
& a_{2}=(0.999)^{2}
\end{aligned}
$$

9. (20 points) A particular bell has a resonance at 440 Hz , with a decay time of half a second, and another resonance at 1320 Hz , with a decay time of 3 seconds. Find a filter, $H(z)$, whose impulse response sounds like the impulse response of this bell if played through a D / A at $F_{s}=10,000$ samples per second.

Solution: The decay time specifies the filter bandwidths; we have that $e^{-\sigma n}=e^{-1}$ when $n=$ decay time \times sampling rate. In this case,

$$
\begin{aligned}
\sigma_{1} & =\frac{1}{0.5 \times 10000}=\frac{1}{5000} \\
\sigma_{2} & =\frac{1}{3 \times 10000}=\frac{1}{30000} \\
\omega_{1} & =\frac{2 \pi 440}{10000} \\
\omega_{2} & =\frac{2 \pi 1320}{10000}
\end{aligned}
$$

The filter can actually be either a parallel or a series connection of these two resonators. If it's a parallel connection, it would be

$$
\begin{aligned}
H(z) & =\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{1}^{*} z^{-1}\right)}+\frac{1}{\left(1-p_{2} z^{-1}\right)\left(1-p_{2}^{*} z^{-1}\right)} \\
p_{1} & =e^{-n / 5000} e^{j \frac{2 \pi 440}{10000}} \\
p_{2} & =e^{-n / 30000} e^{j \frac{2 \pi 1320}{10000}}
\end{aligned}
$$

