Review	Resonance	Natural Frequency	Solving	Summary	Written Examples

Lecture 32: Resonance

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples

2 Resonance

- 3 Natural Frequency
- 4 Finding the Natural Frequency

5 Summary

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples
●0000	000000		000000	000	00
Outline					

- 2 Resonance
- 3 Natural Frequency
- 4 Finding the Natural Frequency
- **5** Summary
- 6 Written Examples

A causal IIR first-order system has the difference equation

$$y[n] = x[n] + ay[n-1]$$

Its system function is

$$H(z) = \frac{1}{1 - a_1 z^{-1}}$$

Its impulse response is

$$h[n] = \begin{cases} a^n & n \ge 0\\ 0 & n < 0 \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A causal IIR second-order system has the difference equation

$$y[n] = x[n] + a_1y[n-1] + a_2y[n-2]$$

Its system function is

$$H(z) = \frac{1}{1 - a_1 z^{-1} - a_2 z^{-2}} = \frac{1}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})},$$

where the relationship between the coefficients and the poles is $a_1 = p_1 + p_2$, $a_2 = -p_1p_2$. Its impulse response is

$$h[n] = \begin{cases} C_1 p_1^n + C_2 p_2^n & n \ge 0\\ 0 & n < 0 \end{cases}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Suppose we write the pole as $p_1 = e^{-\sigma_1 + j\omega_1}$. Then we can write

$$H(z) = \frac{1}{1 - 2e^{-\sigma_1}\cos(\omega_1)z^{-1} + e^{-2\sigma_1}z^{-2}}$$

and

$$h[n] = \frac{1}{\sin(\omega_1)} e^{-\sigma_1 n} \sin(\omega_1(n+1)) u[n]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In the frequency response, there are three frequencies that really matter:

1 Right at the pole, at $\omega = \omega_1$, we have

$$|H(\omega_1)| \propto rac{1}{\sigma_1}$$

2 At \pm half a bandwidth, $\omega = \omega_1 \pm \sigma_1$, we have

$$|H(\omega_1 \pm \sigma_1)| = \frac{1}{\sqrt{2}}|H(\omega_1)|$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples
00000	●○○○○○	0000	000000	000	00
Outline	:				

2 Resonance

- 3 Natural Frequency
- 4 Finding the Natural Frequency

5 Summary

6 Written Examples

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples
00000	00000		000000	000	00
Resona	nce				

"Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts."

- https://en.wikipedia.org/ wiki/Resonance

CC-BY 2.0,

https://commons.wikimedia.org/wiki/File:

Little_girl_on_swing.jpg

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples
00000	000000	0000	000000	000	00
Resonal	nce				

"Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts."

- https://en.wikipedia.org/ wiki/Resonance

CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:

Resonancia_en_sistema_masa_resorte.gif

In a discrete-time system, the "applied force" is x[n]. The "natural frequency" is ω_0 , and σ is its damping:

$$y[n] = x[n] + 2e^{-\sigma}\cos(\omega_0)y[n-1] - e^{-2\sigma}y[n-2]$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples
00000	○○○○●○	0000	000000	000	00
Resonar	nce				

Suppose "the frequency of the applied force is close to the natural frequency," i.e., $x[n] = e^{j\omega_A n}$:

$$y[n] = e^{j\omega_A n} + 2e^{-\sigma}\cos(\omega_0)y[n-1] - e^{-2\sigma_0}y[n-2]$$
 (1)

Since this is a linear, shift-invariant system, the output will be at the same frequency as the input:

$$y[n] = H(\omega_A)e^{j\omega_A n}$$
(2)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Combining Eq. (1) and (2) gives us:

$$H(\omega_A) = rac{1}{\left(1-e^{-\sigma}e^{j(\omega_A-\omega_0)}
ight)\left(1-e^{-\sigma}e^{j(\omega_A+\omega_0)}
ight)}$$

анианианан н

~) Q (*

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples
00000	000000	●०००	000000	000	00
Outline					

2 Resonance

3 Natural Frequency

4 Finding the Natural Frequency

5 Summary

6 Written Examples

Review Resonance October Solving Summary Written Examples October Solving Summary October Solving Summary October Solving October Solving Summary October Solving October Solving Summary October Solving October Solving October Solving Summary October Solving October Solving Summary October Solving Octo

Suppose $x[n] = \delta[n]$ and $\sigma = 0$, then we have

$$y[n] = \delta[n] + 2\cos(\omega_0)y[n-1] - y[n-2]$$

• If the natural frequency is
$$\omega_0 = \frac{\pi}{3}$$
, then $y[n] = y[n-1] - y[n-2]$:

$$1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, \ldots$$

• If the natural frequency is $\omega_0 = \frac{\pi}{2}$, then y[n] = -y[n-2]:

$$1, 0, -1, 0, 1, 0, -1, 0, 1, 0, \ldots$$

• If the natural frequency is
$$\omega_0 = \frac{2\pi}{3}$$
, then
 $y[n] = -y[n-1] - y[n-2]$:
 $1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, ...$

Natural frequencies of physical systems are determined by their size, shape, and materials. For example, the natural frequencies of a column of air, closed at both ends (a flute, or the vowel /u/) are $F_k = \frac{kc}{2L}$, where c is the speed of sound and L is the length:

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples
		0000			

Damped Impulse Response: Amplitude Decreases Toward Zero Suppose $x[n] = \delta[n]$, $\omega_0 = \frac{\pi}{2}$, and $\sigma = -\ln(0.9) = 0.105$: $y[n] = \delta[n] - (0.9)^2 y[n-2]$

$$= 1, 0, -(0.9)^2, 0, (0.9)^4, 0, -(0.9)^6, 0, \ldots$$

"Applied Force:" Amplitude Increases toward $|H(\omega)|$

Suppose x[n] is a cosine at the natural frequency:

$$y[n] = \cos\left(\frac{\pi n}{2}\right) - (0.9)^2 y[n-2]$$

= 1, 0, -1 - (0.9)², 0, 1 + (0.9)² + (0.9)⁴, ...

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples
00000	000000	0000	●○○○○○	000	00
Outline	:				

2 Resonance

3 Natural Frequency

4 Finding the Natural Frequency

5 Summary

6 Written Examples

 Review
 Resonance
 Natural Frequency
 Solving
 Summary
 Written Examples

 Finding the Natural Frequency
 •••••••
 ••••••
 •••••
 ••••

Suppose we're given a system

$$y[n] = x[n] - by[n-1] - cy[n-2]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How can we find its resonant frequency? Answer: use the quadratic formula!!
 Review
 Resonance
 Natural Frequency
 Solving
 Summary
 Written Examples

 Finding the Natural Frequency
 000
 000
 000
 000
 000

$$Y(z) = X(z) - bz^{-1}Y(z) - cz^{-2}Y(z)$$
$$\frac{Y(z)}{X(z)} = \frac{z^2}{z^2 + bz + c} = \frac{z^2}{(z - p_1)(z - p_2)}$$

So the poles are

$$p_1, p_2 = rac{-b \pm \sqrt{b^2 - 4c}}{2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$p_1, p_2 = -\frac{b}{2} \pm \frac{\sqrt{b^2 - 4c}}{2}$$

Notice that if $b^2 > 4c$, then both p_1 and p_2 are real numbers! This is called an **overdamped system**. It is overdamped in the sense that it doesn't resonate, because *b* is too large. Instead of resonating, the impulse response is just the sum of two exponential decays:

$$h[n] = \begin{cases} C_1 p_1^n + C_2 p_2^n & n \ge 0\\ 0 & n < 0 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$p_1, p_2 = -\frac{b}{2} \pm \frac{\sqrt{b^2 - 4c}}{2} = -\frac{b}{2} \pm j \frac{\sqrt{4c - b^2}}{2}$$

If $b^2 < 4c$, then both p_1 and p_2 are complex numbers, so the system resonates. This is called an **underdamped system**, and as we've seen, the impulse response is

$$h[n] = \begin{cases} \frac{1}{\sin(\omega_0)} e^{-\sigma n} \sin(\omega_0(n+1)) & n \ge 0\\ 0 & n < 0 \end{cases}$$

where $-\sigma + j\omega_0 = \ln(p_1)$.

Suppose we set y[n] = x[n] + y[n-1] - cy[n-2], and gradually increase c. Here's what happens:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples
00000	000000	0000	000000	●○○	00
Outline	5				

- 2 Resonance
- 3 Natural Frequency
- 4 Finding the Natural Frequency

5 Summary

6 Written Examples

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples
00000	000000	0000	000000	○●○	00
Summa	ry				

$$y[n] = x[n] - by[n-1] - cy[n-2]$$
$$H(z) = \frac{1}{1 + bz^{-1} + cz^{-2}} = \frac{1}{(1 - p_1 z^{-1})(1 - p_2 z^{-2})}$$
$$p_1, p_2 = -\frac{b}{2} \pm \frac{\sqrt{b^2 - 4c}}{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples			
00000	000000	0000	000000	○○●	00			
Summary								

• If $b^2 > 4c$, then the system is called **overdamped**. Its poles are both real-valued, and

$$h[n] = C_1 p_1^n u[n] + C_2 p_2^n u[n]$$

- If $b^2 < 4c$, then the system is called **underdamped** or **resonant**.
 - Its poles are complex conjugates, $p_2 = p_1^*$.
 - Its natural frequency is $\omega_0 = \Im\{\ln(p_1)\} = \angle p_1$.
 - Its bandwidth is $2\sigma = -2\Re\{\ln(p_1)\} = -2\Re\{\ln|p_1|\}$.

Review	Resonance	Natural Frequency	Solving	Summary	Written Examples
00000	000000	0000	000000	000	●○
Outline					

- 2 Resonance
- 3 Natural Frequency
- 4 Finding the Natural Frequency

5 Summary

6 Written Examples

Consider the system

$$y[n] = x[n] + 1.4y[n-1] - 0.75y[n-2]$$

What is its natural frequency? What is its bandwidth?

Suppose you want to create a system with the following impulse response:

$$h[n] \propto (0.9)^n \sin\left(\frac{\pi}{6}(n+1)\right)$$

Find b and c so that y[n] = x[n] - by[n-1] - cy[n-2].