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First-Order System

A causal IIR first-order system has the difference equation

y [n] = x [n] + ay [n − 1]

Its system function is

H(z) =
1

1− a1z−1

Its impulse response is

h[n] =

{
an n ≥ 0
0 n < 0
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Second-Order System

A causal IIR second-order system has the difference equation

y [n] = x [n] + a1y [n − 1] + a2y [n − 2]

Its system function is

H(z) =
1

1− a1z−1 − a2z−2
=

1

(1− p1z−1)(1− p2z−1)
,

where the relationship between the coefficients and the poles is
a1 = p1 + p2, a2 = −p1p2. Its impulse response is

h[n] =

{
C1p

n
1 + C2p

n
2 n ≥ 0

0 n < 0
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Impulse Response of a Second-Order All-Pole Filter

Suppose we write the pole as p1 = e−σ1+jω1 . Then we can write

H(z) =
1

1− 2e−σ1 cos(ω1)z−1 + e−2σ1z−2

and

h[n] =
1

sin(ω1)
e−σ1n sin(ω1(n + 1))u[n]



Review Resonance Natural Frequency Solving Summary Written Examples

Magnitude Response of a Second-Order All-Pole Filter

In the frequency response, there are three frequencies that really
matter:

1 Right at the pole, at ω = ω1, we have

|H(ω1)| ∝ 1

σ1

2 At ± half a bandwidth, ω = ω1 ± σ1, we have

|H(ω1 ± σ1)| =
1√
2
|H(ω1)|
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Resonance

“Resonance describes the
phenomenon of increased
amplitude that occurs when the
frequency of an applied periodic
force (or a Fourier component of
it) is equal or close to a natural
frequency of the system on which
it acts.”
- https://en.wikipedia.org/
wiki/Resonance

CC-BY 2.0,

https://commons.wikimedia.org/wiki/File:

Little_girl_on_swing.jpg

https://en.wikipedia.org/wiki/Resonance
https://en.wikipedia.org/wiki/Resonance
https://commons.wikimedia.org/wiki/File:Little_girl_on_swing.jpg
https://commons.wikimedia.org/wiki/File:Little_girl_on_swing.jpg
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Resonance

“Resonance describes the
phenomenon of increased
amplitude that occurs when the
frequency of an applied periodic
force (or a Fourier component of
it) is equal or close to a natural
frequency of the system on which
it acts.”
- https://en.wikipedia.org/
wiki/Resonance

CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:

Resonancia_en_sistema_masa_resorte.gif

https://en.wikipedia.org/wiki/Resonance
https://en.wikipedia.org/wiki/Resonance
https://commons.wikimedia.org/wiki/File:Resonancia_en_sistema_masa_resorte.gif
https://commons.wikimedia.org/wiki/File:Resonancia_en_sistema_masa_resorte.gif
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Resonance in Discrete-Time Systems

In a discrete-time system, the “applied force” is x [n]. The “natural
frequency” is ω0, and σ is its damping:

y [n] = x [n] + 2e−σ cos(ω0)y [n − 1]− e−2σy [n − 2]
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Resonance

Suppose “the frequency of the applied force is close to the natural
frequency,” i.e., x [n] = e jωAn:

y [n] = e jωAn + 2e−σ cos(ω0)y [n − 1]− e−2σ0y [n − 2] (1)

Since this is a linear, shift-invariant system, the output will be at
the same frequency as the input:

y [n] = H(ωA)e jωAn (2)

Combining Eq. (1) and (2) gives us:

H(ωA) =
1(

1− e−σe j(ωA−ω0)
) (

1− e−σe j(ωA+ω0)
)



Review Resonance Natural Frequency Solving Summary Written Examples

Resonance (https://commons.wikimedia.org/wiki/File:Resonance.PNG)

https://commons.wikimedia.org/wiki/File:Resonance.PNG
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Natural Frequency

Suppose x [n] = δ[n] and σ = 0, then we have

y [n] = δ[n] + 2 cos(ω0)y [n − 1]− y [n − 2]

If the natural frequency is ω0 = π
3 , then

y [n] = y [n − 1]− y [n − 2]:

1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1, 0, . . .

If the natural frequency is ω0 = π
2 , then y [n] = −y [n − 2]:

1, 0,−1, 0, 1, 0,−1, 0, 1, 0, . . .

If the natural frequency is ω0 = 2π
3 , then

y [n] = −y [n − 1]− y [n − 2]:

1,−1, 0, 1,−1, 0, 1,−1, 0, 1,−1, 0, . . .
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Natural Frequencies of Physical Systems

Natural frequencies of physical systems are determined by their
size, shape, and materials. For example, the natural frequencies of
a column of air, closed at both ends (a flute, or the vowel /u/) are
Fk = kc

2L , where c is the speed of sound and L is the length:

CC-SA 3.0, https://en.wikipedia.org/wiki/Acoustic_resonance

https://en.wikipedia.org/wiki/Acoustic_resonance
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Damped Impulse Response: Amplitude Decreases Toward Zero

Suppose x [n] = δ[n], ω0 = π
2 , and σ = − ln(0.9) = 0.105:

y [n] = δ[n]− (0.9)2y [n − 2]

= 1, 0,−(0.9)2, 0, (0.9)4, 0,−(0.9)6, 0, . . .

“Applied Force:” Amplitude Increases toward |H(ω)|
Suppose x [n] is a cosine at the natural frequency:

y [n] = cos
(πn

2

)
− (0.9)2y [n − 2]

= 1, 0,−1− (0.9)2, 0, 1 + (0.9)2 + (0.9)4, . . .
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Finding the Natural Frequency

Suppose we’re given a system

y [n] = x [n]− by [n − 1]− cy [n − 2]

How can we find its resonant frequency?
Answer: use the quadratic formula!!
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Finding the Natural Frequency

Y (z) = X (z)− bz−1Y (z)− cz−2Y (z)

Y (z)

X (z)
=

z2

z2 + bz + c
=

z2

(z − p1)(z − p2)

So the poles are

p1, p2 =
−b ±

√
b2 − 4c

2
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Overdamped System: b2 > 4c

p1, p2 = −b

2
±
√
b2 − 4c

2

Notice that if b2 > 4c , then both p1 and p2 are real numbers!
This is called an overdamped system. It is overdamped in the
sense that it doesn’t resonate, because b is too large. Instead of
resonating, the impulse response is just the sum of two exponential
decays:

h[n] =

{
C1p

n
1 + C2p

n
2 n ≥ 0

0 n < 0



Review Resonance Natural Frequency Solving Summary Written Examples

Underdamped System: b2 < 4c

p1, p2 = −b

2
±
√
b2 − 4c

2
= −b

2
± j

√
4c − b2

2

If b2 < 4c, then both p1 and p2 are complex numbers, so the
system resonates. This is called an underdamped system, and as
we’ve seen, the impulse response is

h[n] =

{ 1
sin(ω0)

e−σn sin(ω0(n + 1)) n ≥ 0

0 n < 0

where −σ + jω0 = ln(p1).
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Comparison of Underdamped and Overdamped Systems

Suppose we set y [n] = x [n] + y [n − 1]− cy [n − 2], and gradually
increase c . Here’s what happens:
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Summary

y [n] = x [n]− by [n − 1]− cy [n − 2]

H(z) =
1

1 + bz−1 + cz−2
=

1

(1− p1z−1)(1− p2z−2)

p1, p2 = −b

2
±
√
b2 − 4c

2
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Summary

If b2 > 4c , then the system is called overdamped. Its poles
are both real-valued, and

h[n] = C1p
n
1u[n] + C2p

n
2u[n]

If b2 < 4c , then the system is called underdamped or
resonant.

Its poles are complex conjugates, p2 = p∗1 .
Its natural frequency is ω0 = ={ln(p1)} = ∠p1.
Its bandwidth is 2σ = −2<{ln(p1)} = −2<{ln |p1|}.
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Written Examples

1 Consider the system

y [n] = x [n] + 1.4y [n − 1]− 0.75y [n − 2]

What is its natural frequency? What is its bandwidth?

2 Suppose you want to create a system with the following
impulse response:

h[n] ∝ (0.9)n sin
(π

6
(n + 1)

)
Find b and c so that y [n] = x [n]− by [n − 1]− cy [n − 2].
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