Lecture 29: Block Diagrams and the Inverse Z Transform

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis
(1) Review: FIR and IIR Filters, and System Functions
(2) The System Function and Block Diagrams
(3) Inverse Z Transform
(4) Summary
(5) Written Example

Outline

(1) Review: FIR and IIR Filters, and System Functions
(2) The System Function and Block Diagrams
(3) Inverse Z Transform

4 Summary
(5) Written Example

FIR and IIR Filters

- An autoregressive filter is also called infinite impulse response (IIR), because $h[n]$ has infinite length.
- A filter with only feedforward coefficients, and no feedback coefficients, is called finite impulse response (FIR), because $h[n]$ has finite length (its length is just the number of feedforward terms in the difference equation).

System Functions

A first-order autoregressive filter,

$$
y[n]=x[n]+b x[n-1]+a y[n-1],
$$

has the impulse response and system function

$$
h[n]=a^{n} u[n]+b a^{n-1} u[n-1] \leftrightarrow H(z)=\frac{1+b z^{-1}}{1-a z^{-1}},
$$

where a is called the pole of the filter, and $-b$ is called its zero.

Causality and Stability

- A filter is causal if and only if the output, $y[n]$, depends only an current and past values of the input, $x[n], x[n-1], x[n-2], \ldots$
- A filter is stable if and only if every finite-valued input generates a finite-valued output. A causal first-order IIR filter is stable if and only if $|a|<1$.

Outline

(1) Review: FIR and IIR Filters, and System Functions

(2) The System Function and Block Diagrams
(3) Inverse Z Transform

4 Summary
(5) Written Example

Why use block diagrams?

A first-order difference equation looks like

$$
y[n]=b_{0} x[n]+b_{1} x[n-1]+a y[n-1]
$$

- It's pretty easy to understand what computation is taking place in a first-order difference equation.
- As we get to higher-order systems, though, the equations for implementing them will be kind of complicated.
- In order to make the complicated equations very easy, we represent the equations using block diagrams.

Elements of a block diagram

A block diagram has just three main element types:
(1) Multiplier: the following element means $y[n]=b_{0} \times[n]$:

(2) Unit Delay: the following element means $y[n]=x[n-1]$ (i.e., $Y(z)=z^{-1} X(z)$):

(3) Adder: the following element means $z[n]=x[n]+y[n]$:

Example: Time Domain

Here's an example of a complete block diagram:

This block diagram is equivalent to the following equation:

$$
y[n]=x[n]+a y[n-1]
$$

Notice that we can read it, also, as

$$
Y(z)=X(z)+a z^{-1} Y(z) \quad \Rightarrow \quad H(z)=\frac{1}{1-a z^{-1}}
$$

A Complete First-Order IIR Filter

Now consider how we can represent a complete first-order IIR filter, including both the pole and the zero. Here it is in the z-domain:

$$
Y(z)=b_{0} X(z)+b_{1} z^{-1} X(z)+a_{1} z^{-1} Y(z)
$$

When we implement it, we would write a line of python that does this:

$$
y[n]=b_{0} x[n]+b_{1} x[n-1]+a_{1} y[n-1],
$$

which is exactly this block diagram:

Series and Parallel Combinations

Now let's talk about how to combine systems.

- Series combination: passing the signal through two systems in series is like multiplying the system functions:

$$
H(z)=H_{2}(z) H_{1}(z)
$$

- Parallel combination: passing the signal through two systems in parallel, then adding the outputs, is like adding the system functions:

$$
H(z)=H_{1}(z)+H_{2}(z)
$$

One Block for Each System

Suppose that one of the two systems, $H_{1}(z)$, looks like this:

and has the system function

$$
H_{1}(z)=\frac{1}{1-p_{1} z^{-1}}
$$

Let's represent the whole system using a single box:

$$
x[n] \propto H_{1}(z) \rightarrow y[n]
$$

Series Combination

The series combination, then, looks like this:

$$
x[n] \circ H_{1}(z) \xrightarrow{v[n]} H_{2}(z) \rightarrow y[n]
$$

This means that

$$
Y(z)=H_{2}(z) V(z)=H_{2}(z) H_{1}(z) X(z)
$$

and therefore

$$
H(z)=\frac{Y(z)}{X(z)}=H_{1}(z) H_{2}(z)
$$

Series Combination

The series combination, then, looks like this:

$$
x[n] \circ H_{1}(z) \longrightarrow H_{2}(z) \rightarrow y_{2}[n]
$$

Suppose that we know each of the systems separately:

$$
H_{1}(z)=\frac{1}{1-p_{1} z^{-1}}, \quad H_{2}(z)=\frac{1}{1-p_{2} z^{-1}}
$$

Then, to get $H(z)$, we just have to multiply:

$$
H(z)=\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)}=\frac{1}{1-\left(p_{1}+p_{2}\right) z^{-1}+p_{1} p_{2} z^{-2}}
$$

Parallel Combination

Parallel combination of two systems looks like this:

This means that

$$
Y(z)=H_{1}(z) X(z)+H_{2}(z) X(z)
$$

and therefore

$$
H(z)=\frac{Y(z)}{X(z)}=H_{1}(z)+H_{2}(z)
$$

Parallel Combination

Parallel combination of two systems looks like this:

Suppose that we know each of the systems separately:

$$
H_{1}(z)=\frac{1}{1-p_{1} z^{-1}}, \quad H_{2}(z)=\frac{1}{1-p_{2} z^{-1}}
$$

Then, to get $H(z)$, we just have to add:

$$
H(z)=\frac{1}{1-p_{1} z^{-1}}+\frac{1}{1-p_{2} z^{-1}}=\frac{2-\left(p_{1}+p_{2}\right) z^{-1}}{1-\left(p_{1}+p_{2}\right) z^{-1}+p_{1} p_{2} z^{-2}}
$$

Outline

(1) Review: FIR and IIR Filters, and System Functions
(2) The System Function and Block Diagrams
(3) Inverse Z Transform

4 Summary
(5) Written Example

Inverse Z transform

Suppose you know $H(z)$, and you want to find $h[n]$. How can you do that?

How to find the inverse Z transform

Any IIR filter $H(z)$ can be written as. . .

- denominator terms, each with this form:

$$
G_{\ell}(z)=\frac{1}{1-a z^{-1}} \quad \leftrightarrow \quad g_{\ell}[n]=a^{n} u[n]
$$

- each possibly multiplied by a numerator term, like this one:

$$
D_{k}(z)=b_{k} z^{-k} \quad \leftrightarrow \quad d_{k}[n]=b_{k} \delta[n-k] .
$$

Step \#1: Numerator Terms

Consider one that you already know:

$$
H(z)=\frac{1+b z^{-1}}{1-a z^{-1}}=\left(\frac{1}{1-a z^{-1}}\right)+b z^{-1}\left(\frac{1}{1-a z^{-1}}\right)
$$

and therefore

$$
h[n]=\left(a^{n} u[n]\right)+b\left(a^{n-1} u[n-1]\right)
$$

Step \#1: Numerator Terms

So here is the inverse transform of $H(z)=\frac{1+0.5 z^{-1}}{1-0.85 z^{-1}}$:
$(0.85)^{n} u[n]$

$(0.85)^{n} u[n]+0.5(0.85)^{n-1} u[n-1]$

Step \#1: Numerator Terms

In general, if

$$
G(z)=\frac{1}{A(z)}
$$

for any polynomial $A(z)$, and

$$
H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{A(z)}
$$

then

$$
h[n]=b_{0} g[n]+b_{1} g[n-1]+\cdots+b_{M} g[n-M]
$$

Step \#2: Denominator Terms

Now we need to figure out the inverse transform of

$$
G(z)=\frac{1}{A(z)}
$$

We will solve this using a method called partial fraction expansion.

Step \#2: Partial Fraction Expansion

Partial fraction expansion works like this:
(1) Factor $A(z)$:

$$
G(z)=\frac{1}{\prod_{\ell=1}^{N}\left(1-p_{\ell} z^{-1}\right)}
$$

(2) Assume that $G(z)$ is the result of a parallel system combination:

$$
G(z)=\frac{C_{1}}{1-p_{1} z^{-1}}+\frac{C_{2}}{1-p_{2} z^{-1}}+\cdots
$$

(3) Find the constants, C_{ℓ}, that make the equation true. Such constants always exist, as long as none of the roots are repeated ($p_{k} \neq p_{\ell}$ for $k \neq \ell$).

Partial Fraction Expansion: Example

Step \# 1: Factor it:

$$
\frac{1}{1-1.2 z^{-1}+0.72 z^{-2}}=\frac{1}{\left(1-(0.6+j 0.6) z^{-1}\right)\left(1-(0.6-j 0.6) z^{-1}\right)}
$$

Step \#2: Express it as a sum:

$$
\frac{1}{1-1.2 z^{-1}+0.72 z^{-2}}=\frac{C_{1}}{1-(0.6+j 0.6) z^{-1}}+\frac{C_{2}}{1-(0.6-j 0.6) z^{-1}}
$$

Step \#3: Find the constants. The algebra is annoying, but it turns out that:

$$
C_{1}=\frac{1}{2}-j \frac{1}{2}, \quad C_{2}=\frac{1}{2}+j \frac{1}{2}
$$

Partial Fraction Expansion: Example

The system function is:

$$
\begin{aligned}
G(z) & =\frac{1}{1-1.2 z^{-1}+0.72 z^{-2}} \\
& =\frac{0.5-0.5 j}{1-(0.6+j 0.6) z^{-1}}+\frac{0.5+0.5 j}{1-(0.6-j 0.6) z^{-1}}
\end{aligned}
$$

and therefore the impulse response is:

$$
\begin{aligned}
g[n] & =(0.5-0.5 j)(0.6+0.6 j)^{n} u[n]+(0.5+0.5 j)(0.6-j 0.6)^{n} u[n] \\
& =\left(0.5 \sqrt{2} e^{-j \frac{\pi}{4}}\left(0.6 \sqrt{2} e^{j \frac{\pi}{4}}\right)^{n}+0.5 \sqrt{2} e^{j \frac{\pi}{4}}\left(0.6 \sqrt{2} e^{-j \frac{\pi}{4}}\right)^{n}\right) u[n] \\
& =\sqrt{2}(0.6 \sqrt{2})^{n} \cos \left(\frac{\pi}{4}(n-1)\right) u[n]
\end{aligned}
$$

$g_{2}[n]=(0.5+0.5 j)(0.6-0.6 j)^{n} u[n]$ (imaginary part dashed)

How to find the inverse Z transform

Any IIR filter $H(z)$ can be written as. . .

- a partial fraction expansion into a sum of denominator terms, each with this form:

$$
G_{\ell}(z)=\frac{1}{1-a z^{-1}} \quad \leftrightarrow \quad g_{\ell}[n]=a^{n} u[n]
$$

- each possibly multiplied by a numerator term, like this one:

$$
D_{k}(z)=b_{k} z^{-k} \quad \leftrightarrow \quad d_{k}[n]=b_{k} \delta[n-k] .
$$

Outline

(1) Review: FIR and IIR Filters, and System Functions
(2) The System Function and Block Diagrams
(3) Inverse Z Transform
(4) Summary
(5) Written Example

Summary: Block Diagrams

- A block diagram shows the delays, additions, and multiplications necessary to compute output from input.
- Series combination: passing the signal through two systems in series is like multiplying the system functions:

$$
H(z)=H_{2}(z) H_{1}(z)
$$

- Parallel combination: passing the signal through two systems in parallel, then adding the outputs, is like adding the system functions:

$$
H(z)=H_{1}(z)+H_{2}(z)
$$

Summary: Inverse Z Transform

Any IIR filter $H(z)$ can be written as. . .

- a partial fraction expansion into a sum of denominator terms, each with this form:

$$
G_{\ell}(z)=\frac{1}{1-a z^{-1}} \quad \leftrightarrow \quad g_{\ell}[n]=a^{n} u[n]
$$

- each possibly multiplied by a numerator term, like this one:

$$
D_{k}(z)=b_{k} z^{-k} \quad \leftrightarrow \quad d_{k}[n]=b_{k} \delta[n-k] .
$$

Outline

(1) Review: FIR and IIR Filters, and System Functions
(2) The System Function and Block Diagrams
(3) Inverse Z Transform
(4) Summary
(5) Written Example

Written Example

Find the inverse Z transform of

$$
H(z)=\frac{1-0.7 z^{-1}}{1-0.81 z^{-2}}
$$

