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Review: DTFT

The DTFT (discrete time Fourier transform) of any signal is X (ω),
given by

X (ω) =
∞∑

n=−∞
x [n]e−jωn

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω

Particular useful examples include:

f [n] = δ[n]↔ F (ω) = 1

g [n] = δ[n − n0]↔ G (ω) = e−jωn0
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Properties of the DTFT

Properties worth knowing include:

0 Periodicity: X (ω + 2π) = X (ω)

1 Linearity:

z [n] = ax [n] + by [n]↔ Z (ω) = aX (ω) + bY (ω)

2 Time Shift: x [n − n0]↔ e−jωn0X (ω)

3 Frequency Shift: e jω0nx [n]↔ X (ω − ω0)

4 Filtering is Convolution:

y [n] = h[n] ∗ x [n]↔ Y (ω) = H(ω)X (ω)
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Review: DFT

The DFT (discrete Fourier transform) of any signal is X [k], given
by

X [k] =
N−1∑
n=0

x [n]e−j
2πkn
N

x [n] =
1

N

N−1∑
0

X [k]e j
2πkn
N

Particular useful examples include:

f [n] = δ[n]↔ F [k] = 1

g [n] = δ [((n − n0))N ]↔ G [k] = e−j
2πkn0

N
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Properties of the DTFT

Properties worth knowing include:

0 Periodicity: X [k + N] = X [k]

1 Linearity:

z [n] = ax [n] + by [n]↔ Z [k] = aX [k] + bY [k]

2 Circular Time Shift: x [((n − n0))N ]↔ e−j
2πkn0

N X (ω)

3 Frequency Shift: e j
2πk0n

N x [n]↔ X [k − k0]

4 Filtering is Circular Convolution:

y [n] = h[n] ~ x [n]↔ Y [k] = H[k]X [k],
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Two different ways to think about the DFT

1. x [n] is finite length; DFT is samples of DTFT

x [n] = 0, n < 0 or n ≥ N ↔ X [k] = X (ω)|ω= 2πk
N

2. x [n] is periodic; DFT is scaled version of Fourier series

x [n] = x [n + N] ↔ X [k] = NXk
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1. x [n] finite length, DFT is samples of DTFT

If x [n] is nonzero only for 0 ≤ n ≤ N − 1, then

X (ω) =
∞∑

n=−∞
x [n]e−jωn =

N−1∑
n=0

x [n]e−jωn,

and
X [k] = X (ω)|ω= 2πk

N
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2. x [n] periodic, X [k] = NXk

If x [n] = x [n + N], then its Fourier series is

Xk =
1

N

N−1∑
n=1

x [n]e−j
2πkn
N

x [n] =
N−1∑
k=0

Xke
j 2πkn

N ,

and its DFT is

X [k] =
N−1∑
n=1

x [n]e−j
2πkn
N

x [n] =
1

N

N−1∑
k=0

X [k]e j
2πkn
N
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Delayed impulse wraps around

δ [((n − n0))N ]↔ e−j
2πkn0

N
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Delayed impulse is really periodic impulse

δ [((n − n0))N ]↔ e−j
2πkn0

N
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Principal Phase

Something weird going on: how can the phase keep getting
bigger and bigger, but the signal wraps around?

It’s because the phase wraps around too!

∠X [k] = −ωk(N + n) = −ωkn, because ωk =
2πk

N

Principal phase = add ±2π to the phase, as necessary, so
that −π < ∠X [k] ≤ π
Unwrapped phase = let the phase be as large as necessary
so that it is plotted as a smooth function of ω
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Unwrapped phase vs. Principal phase

δ [((n − n0))N ]↔ e−j
2πkn0

N
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Summary: Two different ways to think about the DFT

1. x [n] is finite length; DFT is samples of DTFT

x [n] = 0, n < 0 or n ≥ N ↔ X [k] = X (ω)|ω= 2πk
N

2. x [n] is periodic; DFT is scaled version of Fourier series

x [n] = x [n + N] ↔ X [k] = NXk
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Multiplying two DFTs: what we think we’re doing
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Multiplying two DFTs: what we’re actually doing
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Circular convolution

Suppose Y [k] = H[k]X [k], then

y [n] =
1

N

N−1∑
k=0

H[k]X [k]e j
2πkn
N

=
1

N

N−1∑
k=0

H[k]

(
N−1∑
m=0

x [m]e−j
2πkm
N

)
e j

2πkn
N

=
N−1∑
m=0

x [m]

(
1

N

N−1∑
k=0

H[k]e−j
2πk(n−m)

N

)

=
N−1∑
m=0

x [m]h [((n −m))N ]

The last line is because 2πk(n−m)
N = 2πk((n−m))N

N .
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Circular convolution

Multiplying the DFT means circular convolution of the
time-domain signals:

y [n] = h[n] ~ x [n]↔ Y [k] = H[k]X [k],

Circular convolution (h[n] ~ x [n]) is defined like this:

h[n] ~ x [n] =
N−1∑
m=0

x [m]h [((n −m))N ] =
N−1∑
m=0

h[m]x [((n −m))N ]
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Circular convolution example
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Circular convolution example
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How long is h[n] ∗ x [n]?

If x [n] is M samples long, and h[n] is L samples long, then their
linear convolution, y [n] = x [n] ∗ h[n], is M + L− 1 samples long.
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Zero-padding turns circular convolution into linear
convolution

How it works:

h[n] is length-L

x [n] is length-M

As long as they are both zero-padded to length
N ≥ L + M − 1, then

y [n] = h[n] ~ x [n] is the same as h[n] ∗ x [n].
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Zero-padding turns circular convolution into linear
convolution

Why it works: Either. . .

n −m is a positive number, between 0 and N − 1. Then
((n −m))N = n −m, and therefore

x [m]h [((n −m))N ] = x [m]h[n −m]

n −m is a negative number, between 0 and −(L− 1). Then
((n −m))N = N + n −m ≥ N − (L− 1) > M − 1, so

x [m]h [((n −m))N ] = 0
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Case #1: n −m is positive, so circular convolution is the
same as linear convolution



Review Periodic in Time Circular Convolution Zero-Padding Summary

Case #2: n −m is negative, so it wraps around, but N is
long enough so that the wrapped part of h [((n −m))N ]
doesn’t overlap with x [m]



Review Periodic in Time Circular Convolution Zero-Padding Summary

Zero-padding turns circular convolution into linear
convolution
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Summary: Two different ways to think about the DFT

1. x [n] is finite length; DFT is samples of DTFT

x [n] = 0, n < 0 or n ≥ N ↔ X [k] = X (ω)|ω= 2πk
N

2. x [n] is periodic; DFT is scaled version of Fourier series

x [n] = x [n + N] ↔ X [k] = NXk
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Circular convolution

Multiplying the DFT means circular convolution of the
time-domain signals:

y [n] = h[n] ~ x [n]↔ Y [k] = H[k]X [k],

Circular convolution (h[n] ~ x [n]) is defined like this:

h[n] ~ x [n] =
N−1∑
m=0

x [m]h [((n −m))N ] =
N−1∑
m=0

h[m]x [((n −m))N ]

Circular convolution is the same as linear convolution if and only if
N ≥ L + M − 1.
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