Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary

Lecture 24: Cicular Convolution

Mark Hasegawa-Johnson All content CC-SA 4.0 unless otherwise specified.

ECE 401: Signal and Image Analysis, Fall 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary

2 Sampled in Frequency \leftrightarrow Periodic in Time

③ Circular Convolution

4 Zero-Padding

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
●○○○○	000000000		0000000	000
Outline				

Review: DTFT and DFT

- **2** Sampled in Frequency \leftrightarrow Periodic in Time
- **3** Circular Convolution

4 Zero-Padding

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
○●000	000000000		0000000	000
Review:	DTFT			

The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n}d\omega$$

Particular useful examples include:

$$f[n] = \delta[n] \leftrightarrow F(\omega) = 1$$
$$g[n] = \delta[n - n_0] \leftrightarrow G(\omega) = e^{-j\omega n_0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Properties worth knowing include:

• Periodicity: $X(\omega + 2\pi) = X(\omega)$

Linearity:

$$z[n] = ax[n] + by[n] \leftrightarrow Z(\omega) = aX(\omega) + bY(\omega)$$

- 2 Time Shift: $x[n n_0] \leftrightarrow e^{-j\omega n_0} X(\omega)$
- Solution Frequency Shift: $e^{j\omega_0 n} x[n] \leftrightarrow X(\omega \omega_0)$
- Iltering is Convolution:

$$y[n] = h[n] * x[n] \leftrightarrow Y(\omega) = H(\omega)X(\omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
00000	000000000	0000000	0000000	000
Review.	DFT			

The DFT (discrete Fourier transform) of any signal is X[k], given by

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}$$
$$x[n] = \frac{1}{N} \sum_{0}^{N-1} X[k] e^{j\frac{2\pi kn}{N}}$$

Particular useful examples include:

$$f[n] = \delta[n] \leftrightarrow F[k] = 1$$
$$g[n] = \delta[((n - n_0))_N] \leftrightarrow G[k] = e^{-j\frac{2\pi k n_0}{N}}$$

Properties worth knowing include:

- Periodicity: X[k + N] = X[k]
- Linearity:

$$z[n] = ax[n] + by[n] \leftrightarrow Z[k] = aX[k] + bY[k]$$

- Oricular Time Shift: x [((n n₀))_N] \leftarrow e^{-j^{2πkn}/N} X(ω)
 Frequency Shift: e^{j^{2πk}/N} x[n] \leftarrow X[k k₀]
- Iltering is Circular Convolution:

$$y[n] = h[n] \circledast x[n] \leftrightarrow Y[k] = H[k]X[k]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
00000	●00000000		0000000	000
Outline				

2 Sampled in Frequency \leftrightarrow Periodic in Time

Gircular Convolution

4 Zero-Padding

1. x[n] is finite length; DFT is samples of DTFT

$$x[n] = 0, n < 0 \text{ or } n \ge N \quad \leftrightarrow \quad X[k] = X(\omega)|_{\omega = \frac{2\pi i}{M}}$$

2. x[n] is periodic; DFT is scaled version of Fourier series

$$x[n] = x[n+N] \quad \leftrightarrow \quad X[k] = NX_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If x[n] is nonzero only for $0 \le n \le N - 1$, then

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=0}^{N-1} x[n]e^{-j\omega n},$$

and

$$X[k] = X(\omega)|_{\omega = \frac{2\pi k}{N}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Review
coordPeriodic in Time
coordCircular Convolution
coordZero-Padding
coordSummary
coord2. x[n] periodic, $X[k] = NX_k$

If x[n] = x[n + N], then its Fourier series is

$$X_{k} = \frac{1}{N} \sum_{n=1}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}$$
$$x[n] = \sum_{k=0}^{N-1} X_{k} e^{j\frac{2\pi kn}{N}},$$

and its DFT is

$$X[k] = \sum_{n=1}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}$$
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi kn}{N}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
00000	○○○○●○○○○		0000000	000
Delayed in	mpulse wraps a	round		

$$\delta\left[((n-n_0))_N\right]\leftrightarrow e^{-j\frac{2\pi k n_0}{N}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
00000	○○○○○●○○○		0000000	000
Delayed	impulse is really	periodic impuls	se	

$$\delta\left[((n-n_0))_N\right]\leftrightarrow e^{-j\frac{2\pi k n_0}{N}}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへぐ

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
00000	○○○○○○●○○		0000000	000
Principal	Phase			

- Something weird going on: how can the phase keep getting bigger and bigger, but the signal wraps around?
- It's because the phase wraps around too!

$$\angle X[k] = -\omega_k(N+n) = -\omega_k n$$
, because $\omega_k = \frac{2\pi k}{N}$

- Principal phase = add $\pm 2\pi$ to the phase, as necessary, so that $-\pi < \angle X[k] \le \pi$
- Unwrapped phase = let the phase be as large as necessary so that it is plotted as a smooth function of ω

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
00000	○○○○○○○○		0000000	000
Unwrappe	d phase vs. P	rincipal phase		

$$\delta\left[((n-n_0))_N\right]\leftrightarrow e^{-j\frac{2\pi k n_0}{N}}$$

・ロト・個ト・モト・モー うへの

1. x[n] is finite length; DFT is samples of DTFT

$$x[n] = 0, n < 0 \text{ or } n \ge N \quad \leftrightarrow \quad X[k] = X(\omega)|_{\omega = \frac{2\pi i}{M}}$$

2. x[n] is periodic; DFT is scaled version of Fourier series

$$x[n] = x[n+N] \quad \leftrightarrow \quad X[k] = NX_k$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
00000	000000000		0000000	000
Outline				

Review: DTFT and DFT

2 Sampled in Frequency \leftrightarrow Periodic in Time

3 Circular Convolution

4 Zero-Padding

5 Summary

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
00000	000000000		0000000	000
Circular co	onvolution			

Suppose Y[k] = H[k]X[k], then

$$y[n] = \frac{1}{N} \sum_{k=0}^{N-1} H[k] X[k] e^{j\frac{2\pi kn}{N}}$$

= $\frac{1}{N} \sum_{k=0}^{N-1} H[k] \left(\sum_{m=0}^{N-1} x[m] e^{-j\frac{2\pi km}{N}} \right) e^{j\frac{2\pi kn}{N}}$
= $\sum_{m=0}^{N-1} x[m] \left(\frac{1}{N} \sum_{k=0}^{N-1} H[k] e^{-j\frac{2\pi k(n-m)}{N}} \right)$
= $\sum_{m=0}^{N-1} x[m] h[((n-m))_N]$

The last line is because $\frac{2\pi k(n-m)}{N} = \frac{2\pi k((n-m))_N}{N}$.

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
00000	000000000		0000000	000
Circular o	convolution			

Multiplying the DFT means **circular convolution** of the time-domain signals:

$$y[n] = h[n] \circledast x[n] \leftrightarrow Y[k] = H[k]X[k],$$

Circular convolution $(h[n] \otimes x[n])$ is defined like this:

$$h[n] \circledast x[n] = \sum_{m=0}^{N-1} x[m]h[((n-m))_N] = \sum_{m=0}^{N-1} h[m]x[((n-m))_N]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Circular	convolution ex	kample		
Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
00000	000000000	○0000●0	0000000	000

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Circula	r convolution o	vampla		000
Review 00000	Periodic in Time	Circular Convolution	Zero-Padding	Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Review 00000	Periodic in Time	Circular Convolution	Zero-Padding ●000000	Summary 000
Outline				

Review: DTFT and DFT

2 Sampled in Frequency \leftrightarrow Periodic in Time

3 Circular Convolution

4 Zero-Padding

If x[n] is M samples long, and h[n] is L samples long, then their linear convolution, y[n] = x[n] * h[n], is M + L - 1 samples long.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review 00000	Periodic in Time 000000000	Circular Convolution	Zero-Padding ○0●0000	Summary 000
Zero-padd	ing turns circu	lar convolution in	nto linear	
convolutio	'n			

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

How it works:

- *h*[*n*] is length-*L*
- x[n] is length-M
- As long as they are both zero-padded to length $N \ge L + M 1$, then
- $y[n] = h[n] \circledast x[n]$ is the same as h[n] * x[n].

Review 00000	Periodic in Time 000000000	Circular Convolution	Zero-Padding ○00●000	Summary 000
Zero-padd	ing turns circu	lar convolution i	nto linear	
convolutio	on			

Why it works: Either...

• n - m is a positive number, between 0 and N - 1. Then $((n - m))_N = n - m$, and therefore

$$x[m]h[((n-m))_N] = x[m]h[n-m]$$

• n-m is a negative number, between 0 and -(L-1). Then $((n-m))_N = N + n - m \ge N - (L-1) > M - 1$, so

$$x[m]h[((n-m))_N] = 0$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Review 00000	Periodic in Time 000000000	Circular Convolution	Zero-Padding ○000000	Summary 000
Case #1:	n-m is posit	ive, so circular co	onvolution is	the
same as li	near convolutio	n		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Review 00000	Periodic in Time 000000000	Circular Convolution	Zero-Padding ○00000●	Summary 000
Zero-padd	ling turns circu	lar convolution i	nto linear	
convolutio	on			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Review 00000	Periodic in Time	Circular Convolution	Zero-Padding 0000000	Summary ●○○
Outline				

Review: DTFT and DFT

- **2** Sampled in Frequency \leftrightarrow Periodic in Time
- **3** Circular Convolution

4 Zero-Padding

1. x[n] is finite length; DFT is samples of DTFT

$$x[n] = 0, n < 0 \text{ or } n \ge N \quad \leftrightarrow \quad X[k] = X(\omega)|_{\omega = \frac{2\pi i}{M}}$$

2. x[n] is periodic; DFT is scaled version of Fourier series

$$x[n] = x[n+N] \quad \leftrightarrow \quad X[k] = NX_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	Periodic in Time	Circular Convolution	Zero-Padding	Summary
00000	000000000		0000000	○0●
Circular c	onvolution			

Multiplying the DFT means **circular convolution** of the time-domain signals:

$$y[n] = h[n] \circledast x[n] \leftrightarrow Y[k] = H[k]X[k],$$

Circular convolution $(h[n] \otimes x[n])$ is defined like this:

$$h[n] \circledast x[n] = \sum_{m=0}^{N-1} x[m]h[((n-m))_N] = \sum_{m=0}^{N-1} h[m]x[((n-m))_N]$$

Circular convolution is the same as linear convolution if and only if $N \ge L + M - 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ