Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		0000000000	000	00

Lecture 15: Discrete-Time Fourier Transform (DTFT)

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Review	DTFT	DTFT Properties	Examples	Summary	Example

- 2 Discrete Time Fourier Transform
- Operation of the DTFT

Review	DTFT	DTFT Properties	Examples	Summary	Example
●○○	00000000		0000000000	000	00
Outline					

- 2 Discrete Time Fourier Transform
- Properties of the DTFT
- 4 Examples
- 5 Summary
- 6 Written Example

Review DTFT DTFT Properties Examples Summary Example 0 00000000 000000000 000 000 000

Suppose we compute y[n] = x[n] * h[n], where

$$egin{aligned} &x[n] = rac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}, \ ext{and} \ y[n] &= rac{1}{N} \sum_{k=0}^{N-1} Y[k] e^{j 2 \pi k n / N}. \end{aligned}$$

The relationship between Y[k] and X[k] is given by the frequency response:

$$Y[k] = H(k\omega_0)X[k]$$

where

$$H(\omega) = \sum_{n=-\infty}^{\infty} h[n] e^{-j\omega n}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

But what about signals that never repeat themselves? Can we still write something like

$$Y(\omega) = H(\omega)X(\omega)?$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	●0000000		0000000000	000	00
Outline					

- Review: Frequency Response
- 2 Discrete Time Fourier Transform
- O Properties of the DTFT
- 4 Examples
- 5 Summary
- 6 Written Example

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	0000000		0000000000	000	00
Aperic	odic				

- An "aperiodic signal" is a signal that is not periodic.
 - Music: strings, woodwinds, and brass are periodic, drums and rain sticks are aperiodic.
 - Speech: vowels and nasals are periodic, plosives and fricatives are aperiodic.
 - Images: stripes are periodic, clouds are aperiodic.
 - Bioelectricity: heartbeat is periodic, muscle contractions are aperiodic.

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	○0●00000		0000000000	000	00
Periodic	:				

The spectrum of a periodic signal is given by its Fourier series. In discrete time, that's:

$$X_{k} = \frac{1}{N_{0}} \sum_{n=-\frac{N_{0}}{2}}^{\frac{N_{0}-1}{2}} x[n] e^{-j\frac{2\pi kn}{N_{0}}}$$
$$= \frac{1}{N_{0}} \sum_{n=-\frac{N_{0}}{2}}^{\frac{N_{0}-1}{2}} x[n] e^{-j\omega n}$$

and that gives the frequency content of the signal, at the frequency $\omega = \frac{2\pi k}{N_0}$. Here I'm using $n \in \left\{-\frac{N_0}{2}, \dots, \frac{N_0-1}{2}\right\}$, but the sum could be over any sequence of N_0 continuous samples.

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	○00●0000	0000000	0000000000	000	00
Aperio	dic				

An aperiodic signal is one that **never** repeats itself. So we want something like the limit, as $N_0 \rightarrow \infty$, of the Fourier series. Here is the simplest such thing that is useful:

Discrete-Time Fourier Transform (DTFT)

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Review
 DTFT
 DTFT Properties
 Examples
 Summary
 Example

 000
 000
 0000000
 00000000
 000
 000
 000

 Fourier Series vs.
 Fourier Transform
 Fourier Transform

The Fourier Series coefficients are:

$$X_{k} = \frac{1}{N_{0}} \sum_{n=-\frac{N_{0}}{2}}^{\frac{N_{0}-1}{2}} x[n]e^{-j\omega n}$$

The Fourier transform is:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

Notice that, besides taking the limit as $N_0 \to \infty$, we also got rid of the $\frac{1}{M_0}$ factor. So we can think of the DTFT as

$$X(\omega) = \lim_{N_0 o \infty, \omega = rac{2\pi k}{N_0}} N_0 X_k$$

where the limit is: as $N_0 \to \infty$, and $k \to \infty$, but $\omega = \frac{2\pi k}{N_0}$ remains constant.

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000€00	0000000	0000000000	000	00
Inverse	DTFT				

In order to convert $X(\omega)$ back to x[n], we'll take advantage of orthogonality:

$$\int_{-\pi}^{\pi} e^{j\omega(m-n)} d\omega = egin{cases} 2\pi & m=n \ 0 & (m-n) = ext{any nonzero integer} \end{cases}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Taking advantage of orthogonality, we can see that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega m} d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \right) e^{j\omega m} d\omega$$
$$= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} x[n] \int_{-\pi}^{\pi} e^{j\omega(m-n)} d\omega$$
$$= x[m]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 Review
 DTFT
 DTFT Properties
 Examples
 Summary
 Example

 000
 0000000
 00000000
 000
 000
 000

 Fourier Series and Fourier Transform
 Compared to the series
 Compared to the series
 Compared to the series
 Compared to the series
 Compared to the series

Discrete-Time Fourier Series (DTFS):

$$X_{k} = \frac{1}{N_{0}} \sum_{n=0}^{N_{0}-1} x[n] e^{-j\frac{2\pi kn}{N_{0}}}$$
$$x[n] = \sum_{k=0}^{N_{0}-1} X_{k} e^{j\frac{2\pi kn}{N_{0}}}$$

Discrete-Time Fourier Transform (DTFT):

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n} d\omega$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000	●○○○○○○	0000000000	000	00
Outline					

- Review: Frequency Response
- 2 Discrete Time Fourier Transform
- Properties of the DTFT
- 4 Examples
- 5 Summary
- 6 Written Example

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000	○●○○○○○	0000000000	000	00
Propert	ies of the	DTFT			

In order to better understand the DTFT, let's discuss these properties:

- Periodicity
- Linearity
- 2 Time Shift
- Frequency Shift
- Filtering is Convolution

Property #4 is actually the reason why we invented the DTFT in the first place. Before we discuss it, though, let's talk about the others.

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		0000000000	000	00
0. Peri	odicitv				

The DTFT is periodic with a period of 2π . That's just because $e^{j2\pi} = 1$:

$$X(\omega) = \sum_{n} x[n]e^{-j\omega n}$$
$$X(\omega + 2\pi) = \sum_{n} x[n]e^{-j(\omega + 2\pi)n} = \sum_{n} x[n]e^{-j\omega n} = X(\omega)$$
$$X(\omega - 2\pi) = \sum_{n} x[n]e^{-j(\omega - 2\pi)n} = \sum_{n} x[n]e^{-j\omega n} = X(\omega)$$

For example, the inverse DTFT can be defined in two different ways:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{0}^{2\pi} X(\omega) e^{j\omega n} d\omega$$

Those two integrals are equal because $X(\omega + 2\pi) = X(\omega)$.

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		0000000000	000	00
1. Linea	arity				

The DTFT is linear:

$$z[n] = ax[n] + by[n] \quad \leftrightarrow \quad Z(\omega) = aX(\omega) + bY(\omega)$$

Proof:

$$Z(\omega) = \sum_{n} z[n]e^{-j\omega n}$$

= $a \sum_{n} x[n]e^{-j\omega n} + b \sum_{n} y[n]e^{-j\omega n}$
= $aX(\omega) + bY(\omega)$

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		0000000000	000	00
2. Time	e Shift Pro	operty			

Shifting in time is the same as multiplying by a complex exponential in frequency:

$$z[n] = x[n - n_0] \quad \leftrightarrow \quad Z(\omega) = e^{-j\omega n_0}X(\omega)$$

Proof:

$$Z(\omega) = \sum_{n=-\infty}^{\infty} x[n - n_0] e^{-j\omega n}$$
$$= \sum_{m=-\infty}^{\infty} x[m] e^{-j\omega(m+n_0)} \quad \text{(where } m = n - n_0\text{)}$$
$$= e^{-j\omega n_0} X(\omega)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000	○○○○○●○	0000000000	000	00
3. Fre	quency Shit	ft Property			

Shifting in frequency is the same as multiplying by a complex exponential in time:

$$z[n] = x[n]e^{j\omega_0 n} \quad \leftrightarrow \quad Z(\omega) = X(\omega - \omega_0)$$

Proof:

$$Z(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{j\omega_0 n} e^{-j\omega n}$$
$$= \sum_{n=-\infty}^{\infty} x[n] e^{-j(\omega-\omega_0)n}$$
$$= X(\omega-\omega_0)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 Review
 DTFT
 DTFT Properties
 Examples
 Summary
 Example

 000
 0000000
 00000000
 000
 000
 000

 4. Convolution Property
 V
 V
 V
 V

Convolving in time is the same as multiplying in frequency:

$$y[n] = h[n] * x[n] \quad \leftrightarrow Y(\omega) = H(\omega)X(\omega)$$

Proof: Remember that y[n] = h[n] * x[n] means that $y[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$. Therefore,

$$Y(\omega) = \sum_{n=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} h[m]x[n-m] \right) e^{-j\omega n}$$

= $\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} (h[m]x[n-m]) e^{-j\omega m} e^{-j\omega(n-m)}$
= $\left(\sum_{m=-\infty}^{\infty} h[m]e^{-j\omega m} \right) \left(\sum_{(n-m)=-\infty}^{\infty} x[n-m]e^{-j\omega(n-m)} \right)$
= $H(\omega)X(\omega)$

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		●○○○○○○○○○	000	00
Outline					

- Review: Frequency Response
- **2** Discrete Time Fourier Transform
- Properties of the DTFT
- 4 Examples
- **5** Summary
- 6 Written Example

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		○●00000000	000	00
Impulse	and Delay	ved Impulse			

For our examples today, let's consider different combinations of these three signals:

$$f[n] = \delta[n]$$

$$g[n] = \delta[n-3]$$

$$h[n] = \delta[n-6]$$

Remember from last time what these mean:

$$f[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
$$g[n] = \begin{cases} 1 & n = 3 \\ 0 & \text{otherwise} \end{cases}$$
$$h[n] = \begin{cases} 1 & n = 6 \\ 0 & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		000000000	000	00
DTFT	of an Impi	ulse			

First, let's find the DTFT of an impulse:

$$f[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
$$F(\omega) = \sum_{n = -\infty}^{\infty} f[n]e^{-j\omega n}$$
$$= 1 \times e^{-j\omega 0}$$
$$= 1$$

So we get that $f[n] = \delta[n] \leftrightarrow F(\omega) = 1$. That seems like it might be important.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

 Review
 DTFT
 DTFT Properties
 Examples
 Summary
 Example

 000
 0000000
 000
 000
 000
 000

Second, let's find the DTFT of a delayed impulse:

$$g[n] = \begin{cases} 1 & n = 3 \\ 0 & \text{otherwise} \end{cases}$$
$$G(\omega) = \sum_{n = -\infty}^{\infty} g[n] e^{-j\omega n}$$
$$= 1 \times e^{-j\omega 3}$$

So we get that

$$g[n] = \delta[n-3] \leftrightarrow G(\omega) = e^{-j3\omega}$$

Similarly, we could show that

$$h[n] = \delta[n-6] \leftrightarrow H(\omega) = e^{-j6\omega}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Review
 DTFT
 DTFT Properties
 Examples
 Summary
 Example

 000
 0000000
 00000000
 00000000
 000
 000

So our signals are:

$$f[n] = \delta[n] \leftrightarrow F(\omega) = 1$$
$$g[n] = \delta[n-3] \leftrightarrow G(\omega) = e^{-3j\omega}$$
$$h[n] = \delta[n-6] \leftrightarrow H(\omega) = e^{-6j\omega}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		0000000000	000	00
Time SI	hift Prope	rty			

Notice that

$$g[n] = f[n-3]$$

$$h[n] = g[n-3].$$

From the time-shift property of the DTFT, we can get that

$$egin{aligned} G(\omega) &= e^{-j3\omega}F(\omega) \ H(\omega) &= e^{-j3\omega}G(\omega). \end{aligned}$$

Plugging in $F(\omega) = 1$, we get

$$G(\omega) = e^{-j3\omega}$$

 $H(\omega) = e^{-j6\omega},$

which we already know to be the right answer!

Notice that, if $F(\omega) = 1$, then anything times $F(\omega)$ gives itself again. In particular,

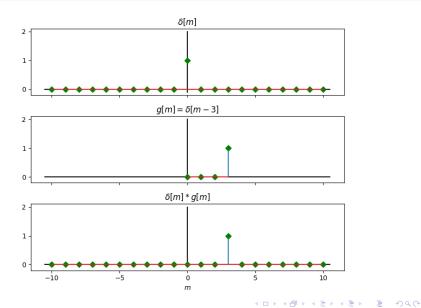
 $G(\omega) = G(\omega)F(\omega)$ $H(\omega) = H(\omega)F(\omega)$

Since multiplication in frequency is the same as convolution in time, that must mean that when you convolve any signal with an impulse, you get the same signal back again:

 $g[n] = g[n] * \delta[n]$ $h[n] = h[n] * \delta[n]$

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		00000000000	000	00
C	Let D	. I.I.	1 1		

Convolution Property and the Impulse



Here's another interesting thing. Notice that $G(\omega) = e^{-j3\omega}$, but $H(\omega) = e^{-j6\omega}$. So

$$H(\omega) = e^{-j3\omega}e^{-j3\omega}$$
$$= G(\omega)G(\omega)$$

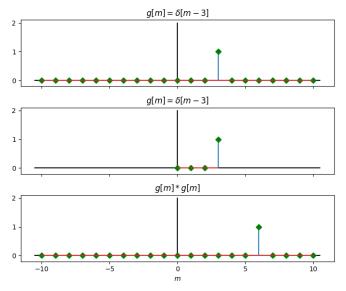
Does that mean that:

$$\delta[n-6] = \delta[n-3] * \delta[n-3]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		○○○○○○○○●	000	00
Convo	Jution Pror	arty and the	Delayed Imr		

Convolution Property and the Delayed Impulse



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		0000000000	●○○	00
Outline					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Review: Frequency Response
- **2** Discrete Time Fourier Transform
- Properties of the DTFT
- 4 Examples

6 Written Example

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000	0000000	000000000	○●O	00
Summa	ry				

The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n} d\omega$$

Particular useful examples include:

$$f[n] = \delta[n] \leftrightarrow F(\omega) = 1$$
$$g[n] = \delta[n - n_0] \leftrightarrow G(\omega) = e^{-j\omega n_0}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Properties worth knowing include:

- Periodicity: $X(\omega + 2\pi) = X(\omega)$
- Linearity:

$$z[n] = ax[n] + by[n] \leftrightarrow Z(\omega) = aX(\omega) + bY(\omega)$$

- 2 Time Shift: $x[n n_0] \leftrightarrow e^{-j\omega n_0} X(\omega)$
- Solution Frequency Shift: $e^{j\omega_0 n} x[n] \leftrightarrow X(\omega \omega_0)$
- Iltering is Convolution:

$$y[n] = h[n] * x[n] \leftrightarrow Y(\omega) = H(\omega)X(\omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000		0000000000	000	●○
Outline					

- Review: Frequency Response
- **2** Discrete Time Fourier Transform
- Properties of the DTFT
- 4 Examples
- **5** Summary
- 6 Written Example

Review	DTFT	DTFT Properties	Examples	Summary	Example
000	00000000	0000000	0000000000	000	○●
Written	Example				

Suppose that h[n] and x[n] are identical rectangle functions:

$$\mathbf{x}[n] = h[n] = egin{cases} 1 & -5 \leq n \leq 5 \ 0 & ext{otherwise} \end{cases}$$

- Find y[n] = h[n] * x[n] by calculating the convolution.
- 2 Find $H(\omega)$.
- 3 Find $Y(\omega) = H(\omega)X(\omega)$