Lecture 4: Fourier Series

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2022

- Review: Spectrum
- Orthogonality
- Series
 Fourier Series
- 4 Example: Square Wave
- Summary

Outline

- Review: Spectrum
- Orthogonality
- 3 Fourier Series
- 4 Example: Square Wave
- 5 Summary

Two-sided spectrum

The **spectrum** of x(t) is the set of frequencies, and their associated phasors,

Spectrum
$$(x(t)) = \{(f_{-N}, a_{-N}), \dots, (f_0, a_0), \dots, (f_N, a_N)\}$$

such that

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

Fourier's theorem

One reason the spectrum is useful is that **any** periodic signal can be written as a sum of cosines. Fourier's theorem says that any x(t) that is periodic, i.e.,

$$x(t+T_0)=x(t)$$

can be written as

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k F_0 t}$$

which is a special case of the spectrum for periodic signals: $f_k = kF_0$, and $a_k = X_k$, and

$$F_0 = \frac{1}{T_0}$$

Analysis and Synthesis

- Fourier Synthesis is the process of generating the signal, x(t), given its spectrum. Last lecture, you learned how to do this, in general.
- Fourier Analysis is the process of finding the spectrum, X_k , given the signal x(t). I'll tell you how to do that today.

Outline

- Review: Spectrum
- Orthogonality
- 3 Fourier Series
- 4 Example: Square Wave
- 5 Summary

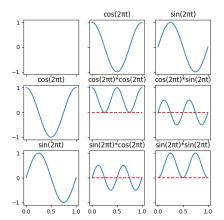
Orthogonality

Two functions f(t) and g(t) are said to be **orthogonal**, over some period of time T, if

$$\int_0^T f(t)g(t) = 0$$

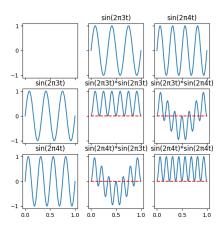
Sine and Cosine are Orthogonal

For example, $\sin(2\pi t)$ and $\cos(2\pi t)$ are orthogonal over the period $0 \le t \le 1$:



Sinusoids at Different Frequencies are Orthogonal

Similarly, sinusoids at different frequencies are orthogonal over any time segment that contains an integer number of periods:



How to use orthogonality

Suppose we have a signal that is known to be

$$x(t) = a\cos(2\pi 3t) + b\sin(2\pi 3t) + c\cos(2\pi 4t) + d\sin(2\pi 4t) + \dots$$

... but we don't know a, b, c, d, etc. Let's use orthogonality to figure out the value of b:

$$\int_{0}^{1} x(t) \sin(2\pi 3t) dt = a \int_{0}^{1} \cos(2\pi 3t) \sin(2\pi 3t) dt$$

$$+ b \int_{0}^{1} \sin(2\pi 3t) \sin(2\pi 3t) dt$$

$$+ c \int_{0}^{1} \cos(2\pi 4t) \sin(2\pi 3t) dt$$

$$+ e \int_{0}^{1} \sin(2\pi 4t) \sin(2\pi 3t) dt + \dots$$

How to use orthogonality

... which simplifies to

$$\int_0^1 x(t)\sin(2\pi 3t)dt = 0 + b\int_0^1 \sin^2(2\pi 3t)dt + 0 + 0 + \dots$$

The average value of $\sin^2(t)$ is 1/2, so

$$\int_0^1 x(t)\sin(2\pi 3t)dt = \frac{b}{2}$$

If we **don't** know the value of b, but we **do** know how to integrate $\int x(t) \sin(2\pi 3t) dt$, then we can find the value of b from the formula above.

How to use orthogonality



How to use Orthogonality: Fourier Series

We still have one problem. Integrating $\int x(t) \cos(2\pi 4t) dt$ is hard—lots of ugly integration by parts and so on. What do we do?

• Fourier Series: Instead of cosine, use complex exponential:

$$\int x(t)e^{-j2\pi ft}dt$$

That integral is still hard, but it's always easier than $\int x(t) \cos(2\pi 4t) dt$. It can usually be solved with some combination of integration by parts, variable substitution, etc.

Outline

- 1 Review: Spectrum
- Orthogonality
- Series
- 4 Example: Square Wave
- Summary

Fourier's Theorem

Remember Fourier's theorem. He said that any periodic signal, with a period of T_0 seconds, can be written

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$$

What I want to do, now, is to prove that if you know x(t), you can find its Fourier series coefficients using the following formula:

$$X_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi kt/T_0} dt$$

Fourier's Theorem

Remember Fourier's theorem. He said that any periodic signal, with a period of T_0 seconds, can be written

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$$

I'm going to find the formula for X_k using the following idea:

• Orthogonality: $e^{-j2\pi\ell t/T_0}$ is orthogonal to $e^{j2\pi kt/T_0}$ for any $\ell \neq k$.

Fourier's Theorem and Orthogonality

Orthogonality: start with $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$, and multiply both sides by $e^{-j2\pi \ell t/T_0}$:

$$x(t)e^{-2\pi\ell t/T_0} = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi(k-\ell)t/T_0}$$

Now integrate both sides of that equation, over any complete period:

$$\frac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi\ell t/T_0} dt = \sum_{k=-\infty}^{\infty} X_k \frac{1}{T_0} \int_0^{T_0} e^{j2\pi(k-\ell)t/T_0} dt$$

Fourier's Theorem and Orthogonality

Now think really hard about what's inside that integral sign:

$$\frac{1}{T_0} \int_0^{T_0} e^{j2\pi(k-\ell)t/T_0} dt
= \frac{1}{T_0} \int_0^{T_0} \cos\left(\frac{2\pi(k-\ell)t}{T_0}\right) dt
+ j \frac{1}{T_0} \int_0^{T_0} \sin\left(\frac{2\pi(k-\ell)t}{T_0}\right) dt$$

• If $k \neq \ell$, then we're integrating a cosine and a sine over $k-\ell$ periods. That integral is always zero.

• If $k = \ell$, then we're integrating

$$rac{1}{T_0} \int_0^{T_0} \cos(0) dt + j rac{1}{T_0} \int_0^{T_0} \sin(0) dt = 1$$

Fourier Series: Analysis

So, because of orthogonality:

$$\frac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi\ell t/T_0} dt = \sum_{k=-\infty}^{\infty} X_k \frac{1}{T_0} \int_0^{T_0} e^{j2\pi(k-\ell)t/T_0} dt$$
$$= \dots + 0 + 0 + 0 + X_\ell + 0 + 0 + \dots$$

Fourier Series

• Analysis (finding the spectrum, given the waveform):

$$X_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi kt/T_0} dt$$

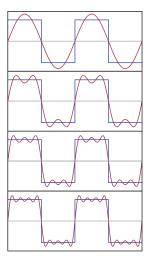
• Synthesis (finding the waveform, given the spectrum):

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$$

Outline

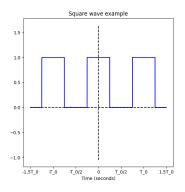
- Review: Spectrum
- Orthogonality
- 3 Fourier Series
- 4 Example: Square Wave
- 5 Summary

Fourier series: Square wave example



Square wave example

Let's use a square wave with a nonzero DC value, like this one:



$$x(t) = \left\{ egin{array}{ll} 1 & -T_0/4 < t < T_0/4 \ 0 & ext{otherwise} \end{array} \right.$$

Fourier Series

• Analysis (finding the spectrum, given the waveform):

$$X_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-j2\pi kt/T_0} dt$$

Fourier Series

• Analysis (finding the spectrum, given the waveform):

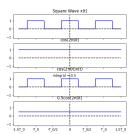
$$X_{k} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) e^{-j2\pi kt/T_{0}} dt$$
$$= \frac{1}{T_{0}} \int_{-T_{0}/4}^{T_{0}/4} e^{-j2\pi kt/T_{0}} dt$$

Square wave: the X_0 term

$$X_0 = \frac{1}{T_0} \int_{-T_0/4}^{T_0/4} e^{-j2\pi kt/T_0} dt$$

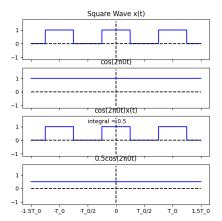
... but if k = 0, then $e^{-j2\pi kt/T_0} = 1!!!$

$$X_0 = \frac{1}{T_0} \int_{-T_0/4}^{T_0/4} 1 dt = \frac{1}{2}$$



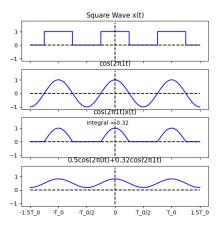
Square wave: the X_0 term

$$X_0=\frac{1}{2}$$



Square wave: the X_k terms, $k \neq 0$

$$X_k = \frac{1}{T_0} \int_{-T_0/4}^{T_0/4} e^{-j2\pi kt/T_0} dt$$

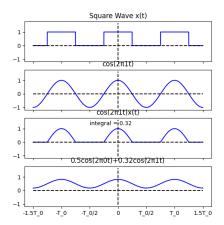


Square wave: the X_k terms, $k \neq 0$

$$\begin{split} X_k &= \frac{1}{T_0} \int_{-T_0/4}^{T_0/4} e^{-j2\pi kt/T_0} dt \\ &= \frac{1}{T_0} \left(\frac{1}{-j2\pi k/T_0} \right) \left[e^{-j2\pi kt/T_0} \right]_{-T_0/4}^{T_0/4} \\ &= \left(\frac{j}{2\pi k} \right) \left[e^{-j2\pi k(T_0/4)/T_0} - e^{-j2\pi k(-T_0/4)/T_0} \right] \\ &= \left(\frac{j}{2\pi k} \right) \left[e^{-j\pi k/2} - e^{j\pi k/2} \right] \\ &= \frac{1}{\pi k} \sin \left(\frac{\pi k}{2} \right) \\ &= \begin{cases} 0 & k \text{ even} \\ \pm \frac{1}{\pi k} & k \text{ odd} \end{cases} \end{split}$$

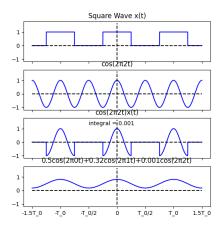
Square wave: the X_1 terms

$$X_1=\frac{1}{\pi}$$



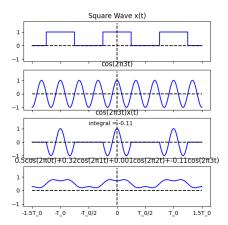
Square wave: the X_2 term

$$X_2 = 0$$



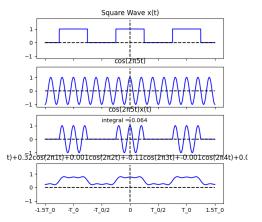
Square wave: the X_3 term

$$X_3=-\frac{1}{3\pi}$$



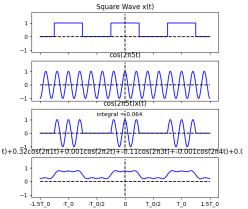
Square wave: the X_5 term

$$X_5=\frac{1}{5\pi}$$



Square wave: the whole Fourier series

$$x(t) = \frac{1}{2} + \frac{1}{\pi} \left(\cos \left(\frac{2\pi t}{T_0} \right) - \frac{1}{3} \cos \left(\frac{6\pi t}{T_0} \right) + \frac{1}{5} \cos \left(\frac{10\pi t}{T_0} \right) - \frac{1}{7} \dots \right)$$



Outline

- 1 Review: Spectrum
- Orthogonality
- 3 Fourier Series
- 4 Example: Square Wave
- 5 Summary

Summary

• Analysis (finding the spectrum, given the waveform):

$$X_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi kt/T_0} dt$$

• **Synthesis** (finding the waveform, given the spectrum):

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$$