$\frac{2021 \text {, exam 2, prob } 2}{f[1]} \xrightarrow[\text { one posir. } 3,1_{1} 1]{ }$

$$
f[n]=g[n] \nVdash h[n], \text { FiND } g[i] \text { s.t. }
$$

Desire $F(w)$ re.l

$$
\begin{gathered}
(x F(w)=0 \quad, \quad \downarrow F(w)=\pi \forall w) \\
e^{j \pi}=-1 \\
\underline{F(w)}=(G(w) \mid H(w) \\
=G(w)|H(w)| e^{j \nmid H(w)} \\
-x H / u)
\end{gathered}
$$

$$
\begin{aligned}
G(\omega) & =e^{-j \omega \cdots,} \\
H(\omega) & =\sum_{n=-\infty}^{\infty} h_{-\infty}(n) e^{-j \omega n} \\
& =\sum_{n=-6}^{2} e^{-j \omega n} \quad \begin{array}{l}
\text { Dumay } v a r \\
m=n+6 \\
n=m-6
\end{array} \\
& =\sum_{m=0}^{8} e^{-j \omega(m-6) \quad} \quad \\
& =e^{j \omega 6} \sum_{m=0}^{8} e^{-j \omega m} \\
& =e^{j \omega 6} \frac{1-e^{-j \omega 9}}{} \quad l
\end{aligned}
$$

$1-e^{-v}$

$$
\begin{aligned}
& =e^{j \omega 6} e^{-j \omega\left(\frac{L-1}{2}\right)} \frac{\sin (\omega L / 2)}{\sin (\omega / 2)} \\
& =e^{j \omega 6} e^{-j \omega 4} \frac{\sin (9 \omega / 2)}{\sin (\omega / 2)} \\
& \left.=e^{2 j \omega} \frac{\sin (\omega 4 / 2)}{\sin (\omega / 2)}\right]
\end{aligned}
$$

$$
F(w)=G(w) H(w)
$$

$$
\begin{gathered}
=\frac{\sin (\omega 4 / 2)}{\sin (\omega) / 2)} \quad \text { if } G(\omega)=e^{-2, \omega} \\
1^{f(n)}
\end{gathered}
$$

$$
[\underbrace{g[n]=\partial l n-R]} \frac{11}{-4} \cdot \frac{4}{4}
$$

another possibili,

Fall 2021, exan 2, problem 5

- First sidelsbe (stap-bend vingle) $<-40 d B$ relatice to moin lobe
- Rect
- Hamming \in
- Length $=64$

Deloy: $\frac{L-1}{2}=\frac{63}{2}$
1

$$
\begin{aligned}
H_{\text {Ded }}(\omega)=H_{L P F} & (\omega, 0.4 H) \\
& -H_{L P F}(\omega ; 0 . \vdots 3 \pi)
\end{aligned}
$$

$$
\begin{aligned}
& h_{\text {ide.d }}[n]=0.4 \sin c(0.4 \pi n) \\
&-0.3 \operatorname{sinc}(0.3 \pi n)
\end{aligned}
$$

$$
\left.\begin{array}{l}
h \text { ide. }\left[n-\frac{63}{2}\right)=0.4 \operatorname{sinc}\left(0.4 \pi\left(n-\frac{63}{2}\right)\right) \\
-0.3 \operatorname{sinc}\left(0.3 \pi\left(n-\frac{63}{2}\right)\right) \\
W[n]=0.54-0.4 \cos \left(2 \pi \frac{n}{63}\right) \\
h[n]=\left(0.54-0.4 \cos \left(2 \pi \frac{n}{63}\right)\right) \cdot \\
\left(0.4 \operatorname{sinc}\left(0.4 \pi\left(n-\frac{63}{2}\right)\right)\right. \\
\left.-0.3 \operatorname{sinc}\left(0.3 \pi\left(n-\frac{63}{2}\right)\right)\right]
\end{array}\right]
$$

$$
\begin{aligned}
& w(n)=0.54+0.46 \cos (2 \pi \overline{z-1}) \\
& 2017, \text { problem } 3
\end{aligned}
$$

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}
$$

LPG PT $3 k A z$, sampled at

$$
\begin{aligned}
& F_{s}=6 \mathrm{ktl} z \\
& T_{0}=0.001 \text { seconds }
\end{aligned}
$$

$X_{k} \Rightarrow 0$ after LPF i- ρ

$$
\frac{k}{T_{0}}>3 k H z \text {, i.e, } 1000 k>3 k 1 H z
$$

after Irltering $^{\text {ang }}$

$$
\begin{aligned}
& X_{k}=\left\{\begin{array}{l}
0 \\
|k| \geq 3 \\
Y_{k} \text { origis } \quad|k|<3 \\
?
\end{array}|k|=3\right. \\
& x[n]=\sum_{k=-3}^{3} X_{k} e^{j 2 \pi k n / T_{0} F_{1},} \\
& t \rightarrow n T_{s}=\frac{n}{F_{s}}=\sum_{k=-3}^{3} X_{k} e^{j 2 \pi k n / 6} \\
& \text { T. } F_{2}=(0.001)(6000)=6 \\
& y(n)=\frac{1}{3} \sum_{m \rightarrow s}^{2} x[n-m] \\
& =h[a] \rightarrow(a) \\
& \frac{1 d-q^{h(n)}}{2} \\
& H(\omega)=e^{-j\left(\frac{\omega-1}{2}\right)} \frac{\sin (\omega / / 2)}{\sin (\omega / 2)} \\
& =e^{-j \omega \frac{\sin (3 \omega / 2)}{\sin (\omega / 2)}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 \omega}{2}=m \pi \quad \text { FOR NJN2ERO } \\
& \text { INTEGEICS } m \\
& \omega=m \frac{2 \pi}{3}= \pm \frac{2 \pi}{3} \\
& \frac{2 \pi k}{6}= \pm \frac{2 \pi}{3} \text { AT } k= \pm 2
\end{aligned}
$$

(a)

$$
Y_{k}=0 \quad \text { For }|k|>3
$$

bECAUSE of ANTI-Allalinh

$$
Y_{k}=0 \text { FoR } k= \pm 2
$$

BCCAUSK OF pUSKAGC NG

$$
, ~ \alpha / \sim(A)
$$

Fourier series of $\times \mathrm{Cr}$
has $X_{k}\left\{\begin{array}{r}=\text { those } \cdot 1 \quad \times(t) \\ |k|<3 \\ =0 \quad|k|>3\end{array}\right.$

$$
\begin{aligned}
& \left.y(0)=h[0] * x C_{a}\right] \\
& Y_{k}=H\left(k w_{0}\right) X_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =H\left(\frac{2 \pi k}{6}\right) X_{k} \\
& =e^{-j\left(\frac{2 \pi k}{6}\right)} \frac{\sin \left(\frac{3}{2}\left(\frac{2 \pi k}{6}\right)\right)}{\sin \left(\frac{1}{2}\left(\frac{2 \pi k}{6}\right)\right)} X_{k} \\
\left|Y_{k}\right| & =\left\{\begin{array}{l}
3 X_{k} \\
\frac{\sin \left(\frac{3}{2}\left(\frac{2 \pi}{6}\right)\right)}{\sin \left(\frac{1}{2}\left(\frac{2 \pi}{6}\right)\right)} X_{k} \quad k=0 \\
0 \quad-1
\end{array}\right.
\end{aligned}
$$

$$
\{
$$

$$
k= \pm 3
$$

othe rwise
2014, exar 1, iprobem 4 $\gg 0$

$$
x[n]=\left\{\begin{array}{cc}
\left(\frac{1}{2}\right)^{n} & n \geq 0 \\
0 & n<0
\end{array}\right.
$$

$\hat{1}^{y(n)}$

$$
\text { (a) } \begin{aligned}
x(\omega) & =\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} e^{-j \omega n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2} e^{-j \omega}\right)^{n} \\
& =\frac{1}{1-\frac{1}{2} e^{-j \omega}}
\end{aligned}
$$

$$
\cap \ldots 1, \ldots, 1 * 1
$$

$$
\begin{aligned}
& \underline{|b|}|X(\omega)|^{-}=X(\omega) \times(n,) \\
& =\left(\frac{1}{1-\frac{1}{2} e^{-j \omega}}\right)\left(\frac{1}{1-\frac{1}{2} e^{j \omega}}\right) \\
& =\frac{1-\frac{1}{2} e^{-j \omega}-\frac{1}{2} e^{j \omega}+\frac{1}{4}}{1} . \\
& =\frac{1}{2} 1\left(0^{j \omega}+e^{-j \omega}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\frac{5}{4}-\cos (\omega)} \\
& \left(\frac{1}{\frac{5}{4}-1}=\frac{1}{\frac{1}{4}}=4 \quad 1 w=0\right.
\end{aligned}
$$

$$
\begin{aligned}
& |x(\omega)|^{2}=\left\{\frac{1}{\frac{5}{4}}=\frac{4}{5}\right. \\
& w= \pm \frac{1}{2} \\
& \frac{1}{\frac{5}{4}+1}=\frac{4}{9} \\
& w= \pm \pi \\
& \frac{1}{1-\frac{1}{2} e^{-j \omega}}=\frac{1}{1-\frac{1}{2} \cos (-\omega)-\frac{1}{2}-\sin (-\omega)} \\
& =\frac{1}{\left(1-\frac{1}{2} \cos (\omega)\right)+j \frac{1}{2} \sin (\omega)} \\
& 11 \therefore 1.11 \\
& \angle \text { DINOM }=\operatorname{atan}\left(\frac{\left.\frac{2 \sin (\omega)}{1-\frac{1}{2} \cos (\omega)}\right)}{\frac{1}{2} \sin (\omega)}\right. \\
& X X(\omega)=-a+\operatorname{ca}\left(\frac{\frac{1}{2} \sin (\omega)}{1-\frac{1}{2} \cos (\omega)}\right) \\
& |x(\omega)|=\frac{1}{\sqrt{\left(1-\frac{1}{2} \cos (\omega)\right)^{2}+\frac{1}{x} \sin 2^{2} \omega}} \\
& |x(\omega)|^{2}=\frac{1}{\left(1-\frac{1}{2} \cos (\omega)\right)^{2}+\frac{1}{4} \sin ^{2}(\omega)}
\end{aligned}
$$

