UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Department of Electrical and Computer Engineering

ECE 401 SIGNAL PROCESSING Fall 2022

EXAM 3

Wednesday, December 14, 2022, 7:00-10:00pm

- This is a CLOSED BOOK exam.
- You are permitted two sheets of handwritten notes, 8.5x11.
- Calculators and computers are not permitted.
- Do not simplify explicit numerical expressions. The expression " $e^{-5}\cos(3)$ " is a MUCH better answer than "-0.00667".
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will appear on Gradescope at exactly 7:00pm; you will need to photograph and upload your answers by exactly 10:00pm.
- There will be a total of 200 points in the exam (9 problems). Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Name:			
netid:			

Phasors

$$A\cos(2\pi ft+\theta)=\Re\left\{Ae^{j\theta}e^{j2\pi ft}\right\}=\frac{1}{2}e^{-j\theta}e^{-j2\pi ft}+\frac{1}{2}e^{j\theta}e^{j2\pi ft}$$

Fourier Series

Analysis:
$$X_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi kt/T_0} dt$$

Synthesis: $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$

Sampling and Interpolation:

$$x[n] = x \left(t = \frac{n}{F_s} \right)$$

$$f_a = \min \left(f \mod F_s, -f \mod F_s \right)$$

$$z_a = \begin{cases} z & f \mod F_s < -f \mod F_s \\ z^* & f \mod F_s > -f \mod F_s \end{cases}$$

$$y(t) = \sum_{n = -\infty}^{\infty} y[n]p(t - nT_s)$$

Convolution

$$h[n]*x[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

Frequency Response and DTFT

$$H(\omega) = \sum_{n = -\infty}^{\infty} h[n]e^{-j\omega n}$$

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\omega)e^{j\omega n} d\omega$$

$$h[n] * \cos(\omega n) = |H(\omega)| \cos(\omega n + \angle H(\omega))$$

Rectangular & Hamming Windows; Ideal LPF

$$\begin{split} w_R[n] &= \begin{cases} 1 & 0 \leq n \leq N-1 \\ 0 & \text{otherwise} \end{cases} \\ \leftrightarrow W_R(\omega) = e^{-\frac{j\omega(N-1)}{2}} \frac{\sin(\omega N/2)}{\sin(\omega/2)} \\ w_H[n] &= 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right) w_R[n] \\ \leftrightarrow W_H(\omega) = 0.54 W_R(\omega) - 0.23 W_R\left(\omega - \frac{2\pi}{N-1}\right) - 0.23 W_R\left(\omega + \frac{2\pi}{N-1}\right) \\ h_{\text{ideal}}[n] &= \frac{\omega_c}{\pi} \text{sinc}(\omega_c n) \\ \leftrightarrow H_{\text{ideal}}(\omega) &= \begin{cases} 1 & |\omega| < \omega_c \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Discrete Fourier Transform

Analysis:
$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}$$

Synthesis: $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j2\pi kn/N}$

Z Transform Pairs

$$b_k z^{-k} \leftrightarrow b_k \delta[n-k]$$

$$\frac{1}{1 - az^{-1}} \leftrightarrow a^n u[n]$$

$$\frac{1}{(1 - e^{-\sigma_1 - j\omega_1} z^{-1})(1 - e^{-\sigma_1 + j\omega_1} z^{-1})} \leftrightarrow \frac{1}{\sin(\omega_1)} e^{-\sigma_1 n} \sin(\omega_1(n+1)) u[n]$$

1. (25 points) Suppose we have a continuous-time signal x(t), given by

$$x(t) = (3+2j)e^{-j12\pi t/T_0} + (5-j)e^{-j6\pi t/T_0} + (5+j)e^{j6\pi t/T_0} + (3-2j)e^{j12\pi t/T_0}$$

(a) Let's multiply x(t) by the cosine of $4\pi t/T_0$, and integrate over one period:

$$A = \int_0^{T_0} x(t) \cos\left(\frac{4\pi t}{T_0}\right) dt$$

What is A?

(b) Suppose we multiply, instead, by the cosine of $6\pi t/T_0$, and integrate over one period:

$$B = \int_0^{T_0} x(t) \cos\left(\frac{6\pi t}{T_0}\right) dt$$

What is B?

(c) Continuing with the same x(t): suppose we sample x(t) with a sampling period of $T = T_0/8$, thus

$$y[n] = \left. x(t) \right|_{t=nT}$$

The resulting y[n] is periodic with a period of 8 samples, and with a discrete-time Fourier series of

$$y[n] = \sum_{k=-3}^{3} Y_k e^{j\frac{2\pi kn}{8}}$$

Find the values of Y_k , for $-3 \le k \le 3$.

 $2.\ (20\ \mathrm{points})$ Consider a linear shift-invariant system with the following impulse response:

$$h[n] = \begin{cases} (0.9)^n & n \ge 0\\ 0 & n < 0 \end{cases}$$

- (a) Is this system stable? Why or why not?
- (b) Suppose that y[n] = h[n] * x[n], where

$$x[n] = \left\{ \begin{array}{ll} 1 & 0 \le n \le 9 \\ 0 & \text{otherwise} \end{array} \right.$$

Use convolution to find y[n]. You may find it useful to know that $\sum_{n=0}^{L-1} a^n = \frac{1-a^L}{1-a}$.

3. (25 points) A linear shift-invariant system has the following frequency response:

$$H(\omega) = e^{-5j\omega} \left(1 + \frac{1}{2}\cos\omega \right)$$

(a) Suppose that y[n] = h[n] * x[n], where

$$x[n] = 3\sin\left(\frac{\pi n}{6}\right)$$

What is y[n]?

(b) What is the impulse response, h[n], of this system?

4.	(20 points) Suppose you want an FIR bandpass filter with a length of $N=1024$, with cutoff frequencies	
	$\omega_{\text{LO}} = 0.46\pi$ and $\omega_{\text{HI}} = 0.48\pi$, and with little stopband ripple. Find an impulse response $h[n]$ that meets these requirements.	

5. (25 points) Consider the signal

$$x[n] = \cos\left(\frac{\pi n}{100}\right)$$

(a) What is the 128-sample DFT, X[k], of this signal? Be sure to consider windowing effects.

(b) Suppose you want to construct the following periodic signal:

$$y[n] = \cos\left(\frac{\pi(n-128\ell)}{100}\right), \quad 128\ell \le n < 128(\ell+1), \ \text{ for all } \ell$$

You can create this signal using the following Fourier series:

$$y[n] = \sum_{k=0}^{127} Y_k e^{j\frac{2\pi kn}{128}}$$

Notice that there is a relationships between Y_k and the DFT coefficients, X[k], that you computed in part (a) of this problem. Find Y_k in terms of X[k].

6. (25 points) Suppose you have a very long signal, x[n], that you want to filter to compute y[n] = h[n] * x[n]. This can be done using the following sequence of steps:

$$H[k] = \sum_{n=0}^{N-1} h[n]e^{-j\frac{2\pi kn}{N}}$$
 (1)

$$x_{\ell}[n] = \begin{cases} x[n+\ell M] & 0 \le n \le M-1, \text{ for all } \ell \\ 0 & \text{otherwise} \end{cases}$$
 (2)

$$X_{\ell}[k] = \sum_{n=0}^{N-1} x_{\ell}[n] e^{-j\frac{2\pi kn}{N}}$$
(3)

$$Y_{\ell}[k] = H[k]X_{\ell}[k] \tag{4}$$

$$y_{\ell}[n] = \frac{1}{N} \sum_{k=0}^{N-1} Y_{\ell}[k] e^{j\frac{2\pi kn}{N}}$$
 (5)

$$y[n] = \sum_{\ell=-\infty}^{\infty} y_{\ell}[n - \ell M] \tag{6}$$

(a) Suppose h[n] is 129 samples long. Find values of M and N such that the algorithm in Eqs. (1) through (6) gives the same result as y[n] = h[n] * x[n]. There are many different correct answers; you only need to find one correct answer.

(b) Suppose $x[n] = \cos(0.08\pi n)$, and $h[n] = \delta[n-126]$. Find $x_{\ell}[n]$ and $y_{\ell}[n]$ in terms of ℓ , M, and n.

7. (20 points) Suppose that

$$H(z) = \frac{1}{1 - 0.9e^{j\pi/6}z^{-1}} + \frac{1}{1 - 0.9e^{-j\pi/6}z^{-1}}$$

Find the pole(s) and zero(s) of H(z).

- 8. (20 points) Consider a notch filter with zeros at $r_1=e^{j0.47\pi}$ and $r_2=e^{-j0.47\pi}$, and with poles at $p_1=0.999e^{j0.47\pi}$ and $p_2=0.999e^{-j0.47\pi}$.
 - (a) What is the 3dB bandwidth of the notch, expressed in radians per sample?

(b) This filter can be implemented as

$$y[n] = x[n] + b_1x[n-1] + b_2x[n-2] - a_1y[n-1] - a_2y[n-2]$$

Find b_1 , b_2 , a_1 , and a_2 .

9. (20 points) A particular bell has a resonance at 440Hz, with a decay time of half a secon resonance at 1320Hz, with a decay time of 3 seconds. Find a filter, $H(z)$, whose impulse r like the impulse response of this bell if played through a D/A at $F_s = 10,000$ samples per	esponse sounds