ECE 401 Signal and Image Analyais
Spring 2022

EXAM 2

Monday, October 31, 2022

- This is a CLOSED BOOK exam.
- You are permitted one sheet of handwritten notes, 8.5×11.
- Calculators and computers are not permitted.
- Do not simplify explicit numerical expressions. The expression " $e^{-5} \cos (3)$ " is a MUCH better answer than "-0.00667".
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will appear on Gradescope at exactly $1: 00 \mathrm{pm}$; you will need to photograph and upload your answers by exactly 2:00pm.
- There will be a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Name:

Convolution

$$
h[n] * x[n]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

Frequency Response

$$
\begin{aligned}
H(\omega) & =\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n} \\
h[n] * \cos (\omega n) & =|H(\omega)| \cos (\omega n+\angle H(\omega))
\end{aligned}
$$

Rectangular Window and Ideal LPF

$$
\begin{gathered}
w_{R}[n]=\left\{\begin{array}{ll}
1 & 0 \leq n \leq N-1 \\
0 & \text { otherwise }
\end{array} \leftrightarrow W_{R}(\omega)=e^{-\frac{j \omega(N-1)}{2}} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)}\right. \\
h_{\text {ideal }}[n]=\frac{\omega_{c}}{\pi} \operatorname{sinc}\left(\omega_{c} n\right) \leftrightarrow H_{\text {ideal }}(\omega)= \begin{cases}1 & |\omega|<\omega_{c} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Hamming Window

$$
\begin{aligned}
w_{H}[n] & = \begin{cases}0.54-0.46 \cos \left(\frac{2 \pi n}{N-1}\right) & 0 \leq n \leq N-1 \\
0 & \text { otherwise }\end{cases} \\
W_{H}(\omega) & =0.54 W_{R}(\omega)+0.23 W_{R}\left(\omega-\frac{2 \pi}{N-1}\right)+0.23 W_{R}\left(\omega+\frac{2 \pi}{N-1}\right)
\end{aligned}
$$

1. (25 points) Consider the following system:

$$
y[n]= \begin{cases}x[n] & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

(a) Is this system linear? Prove your answer.

Solution:

$$
\begin{aligned}
x_{1}[n] & \rightarrow y_{1}[n]= \begin{cases}x_{1}[n] & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases} \\
x_{2}[n] & \rightarrow y_{2}[n]= \begin{cases}x_{2}[n] & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases} \\
x_{3}[n] & =x_{1}[n]+x_{2}[n] \\
x_{3}[n] & \rightarrow y_{3}[n]= \begin{cases}x_{3}[n] & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases} \\
& = \begin{cases}x_{1}[n]+x_{2}[n] & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases} \\
& =y_{1}[n]+y_{2}[n]
\end{aligned}
$$

So yes, it is linear.
(b) Is this system shift-invariant? Prove your answer.

Solution:

$$
\begin{aligned}
x_{1}[n] & \rightarrow y_{1}[n]= \begin{cases}x_{1}[n] & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases} \\
x_{2}[n] & =x_{1}[n-1] \\
x_{2}[n] & \rightarrow y_{2}[n]= \begin{cases}x_{2}[n] & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases} \\
& = \begin{cases}x_{1}[n-1] & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases} \\
& \neq y_{1}[n-1]
\end{aligned}
$$

So it is NOT shift-invariant.
2. (25 points) The second-derivative of a sampled signal may be approximated by an LSI system with the following impulse response:

$$
h[n]=-\delta[n]+\frac{1}{2}(\delta[n+1]+\delta[n-1])
$$

(a) Is this system causal? Why or why not?

Solution: No, because $h[n]$ is not right-sided.
(b) Is this system stable? Why or why not?

Solution: Yes, because $\sum_{n=-\infty}^{\infty}|h[n]|=2$, which is finite.
(c) What is $h[n] * h[n]$? Give the time and value of every nonzero sample, using either a sketch or an equation.

Solution:

$$
h[n] * h[n]=1.5 \delta[n]-(\delta[n-1]+\delta[n+1])+0.25(\delta[n-2]+\delta[n+2])
$$

3. (25 points) Consider, again, the same LSI system that was used in problem 2. Remember that its impulse response is

$$
h[n]=-\delta[n]+\frac{1}{2}(\delta[n+1]+\delta[n-1])
$$

(a) What is its frequency response?

Solution:

$$
\begin{aligned}
H(\omega) & =-1+\frac{1}{2}\left(e^{j \omega}+e^{-j \omega}\right) \\
& =-1+\cos (\omega)
\end{aligned}
$$

(b) Consider a system \mathcal{G} that accepts as input a signal $x[n]$, and generates as output a signal $z[n]$. The system \mathcal{G} does two things to $x[n]$. First, it convolves it with $h[n]$, producing $y[n]=x[n] * h[n]$. Second, it delays it by five samples, producing $z[n]=y[n-5]$. What is the impulse response of the system \mathcal{G} ?

Solution:

$$
g[n]=-\delta[n-5]+\frac{1}{2}(\delta[n-4]+\delta[n-6])
$$

4. (25 points) You have an application for which it is necessary to increase the amplitude of inputs below $\frac{\pi}{4}$ radians/sample, while eliminating inputs above $\frac{3 \pi}{4}$ radians/sample. The ideal filter is therefore:

$$
H_{i}(\omega)= \begin{cases}2 & |\omega|<\frac{\pi}{4} \\ 1 & \frac{\pi}{4}<|\omega|<\frac{3 \pi}{4} \\ 0 & \frac{3 \pi}{4}<|\omega|<\pi\end{cases}
$$

(a) What is $h_{i}[n]$?

Solution: There are several ways to write it. One is:

$$
h_{i}[n]=\frac{3}{4} \operatorname{sinc}\left(\frac{3 \pi n}{4}\right)+\frac{1}{4} \operatorname{sinc}\left(\frac{\pi n}{4}\right)
$$

(b) You propose to create a realizable filter, $h[n]$, by windowing $h_{i}[n]$ with a length- 127 Hamming window: $h[n]=w[n] h_{i}[n]$. In the resulting frequency response, $H(\omega)$, how wide are the transition bands?

Solution: $\frac{8 \pi}{127}$ radians/sample.

THIS PAGE IS SCRATCH PAPER.

