ECE 401 Signal and Image Analyais
Spring 2022

EXAM 1

Wednesday, September 28, 2022

- This is a CLOSED BOOK exam.
- You are permitted one sheet of handwritten notes, 8.5×11.
- Calculators and computers are not permitted.
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will appear on Gradescope at exactly 1:00pm; you will need to photograph and upload your answers by exactly 2:00pm.
- There will be a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Name: \qquad

NetID: \qquad

Phasors

$$
A \cos (2 \pi f t+\theta)=\Re\left\{A e^{j \theta} e^{j 2 \pi f t}\right\}=\frac{1}{2} e^{-j \theta} e^{-j 2 \pi f t}+\frac{1}{2} e^{j \theta} e^{j 2 \pi f t}
$$

Spectrum

$$
\text { Scaling: } y(t)=G x(t)=\sum_{k=-N}^{N}\left(G a_{k}\right) e^{j 2 \pi f_{k} t}
$$

Add a Constant: $y(t)=x(t)+C=\left(a_{0}+C\right)+\sum_{k \neq 0} a_{k} e^{j 2 \pi f_{k} t}$
Add Signals: If $f_{k}=f_{n}^{\prime}=f_{m}^{\prime \prime}$ then $a_{k}=a_{n}^{\prime}+a_{m}^{\prime \prime}$
Time Shift: $y(t)=x(t-\tau)=\sum_{k=-N}^{N}\left(a_{k} e^{-j 2 \pi f_{k} \tau}\right) e^{j 2 \pi f_{k} t}$
Frequency Shift: $y(t)=x(t) e^{j 2 \pi F t}=\sum_{k=-N}^{N} a_{k} e^{j 2 \pi\left(f_{k}+F\right) t}$

$$
\text { Differentiation: } y(t)=\frac{d x}{d t}=\sum_{k=-N}^{N}\left(j 2 \pi f_{k} a_{k}\right) e^{j 2 \pi f_{k} t}
$$

Fourier Series

$$
\begin{aligned}
\text { Analysis: } X_{k} & =\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k t / T_{0}} d t \\
\text { Synthesis: } x(t) & =\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}
\end{aligned}
$$

Sampling and Interpolation:

$$
\begin{aligned}
& x[n]=x\left(t=\frac{n}{F_{s}}\right) \\
& f_{a}=\min \left(f \bmod F_{s},-f \bmod F_{s}\right) \\
& z_{a}= \begin{cases}z & f \bmod F_{s}<-f \bmod F_{s} \\
z^{*} & f \bmod F_{s}>-f \bmod F_{s}\end{cases} \\
& y(t)=\sum_{n=-\infty}^{\infty} y[n] p\left(t-n T_{s}\right)
\end{aligned}
$$

1. (25 points) Suppose that

$$
x(t)=-12 \cos \left(1000 \pi t-\frac{\pi}{4}\right)+4 \sin (1000 \pi t)=M \cos (1000 \pi t+\theta)
$$

Find x and y such that $M=\sqrt{x^{2}+y^{2}}$ and either $\theta=\operatorname{atan}(y / x)$ or $\theta=\operatorname{atan}(y / x)-\pi$.

Solution:

$$
\begin{aligned}
& x=-12 \cos \left(-\frac{\pi}{4}\right)=-6 \sqrt{2} \\
& y=-12 \sin \left(-\frac{\pi}{4}\right)-4=6 \sqrt{2}-4
\end{aligned}
$$

2. (25 points) $x(t)$ is a signal with a period of 0.01 seconds, and with the following shape:

$$
x(t)= \begin{cases}1 & 0<t<0.001 \\ 0 & 0.001<t<0.005 \\ -1 & 0.005<t<0.006 \\ 0 & 0.006<t<0.01\end{cases}
$$

(a) What are the Fourier series coefficients X_{k} for $k \neq 0$? Your answer should contain no variables other than k, but you don't need to simplify.

Solution:

$$
\begin{aligned}
X_{k} & =\frac{1}{-j 2 \pi k}\left(e^{-j \frac{2 \pi k 0.001}{0.01}}-1\right)-\frac{1}{-j 2 \pi k}\left(e^{-j \frac{2 \pi k 0.006}{0.01}}-e^{-j \frac{2 \pi k 0.005}{0.01}}\right) \\
& =\frac{j}{2 \pi k}\left(e^{-j \frac{\pi k}{5}}-1-e^{-j \frac{6 \pi k}{5}}+e^{-j \pi k}\right)
\end{aligned}
$$

\ldots and this can be further simplified (a lot), but let's leave it here for now.
(b) Suppose that $y(t)$ is a signal such that $x(t)=\frac{d y}{d t}$. Express the Fourier series coefficients Y_{k} in terms of the Fourier series coefficients X_{k}. Note that you don't need to solve part (a) in order to solve this part of the problem.

Solution:

$$
\begin{aligned}
y(t) & =\sum Y_{k} e^{j 2 \pi k t / T_{0}} \\
\frac{d y}{d t} & =\sum \frac{j 2 \pi k}{0.01} Y_{k} e^{j 2 \pi k t / T_{0}}
\end{aligned}
$$

...so therefore,

$$
Y_{k}=\frac{0.01}{j 2 \pi k} X_{k}
$$

3. (25 points) Suppose $x(t)$ is sampled to create the signal $y[n]=x\left(\frac{n}{F_{s}}\right)$, with a sampling frequency of $F_{s}=10,000$ samples/second. The signal $y[n]$ is then passed through an ideal D / A in order to produce the signal $z(t)$. In each of the two following cases, what is $z(t)$?
(a)

$$
x(t)=3 \cos \left(2 \pi 8000 t+\frac{\pi}{4}\right)
$$

What is $z(t)$?
Solution: $f_{a}=F_{s}-f=2000 \mathrm{~Hz}$, so $z_{a}=z^{*}=3 e^{-j \pi / 4}$, and

$$
z(t)=3 \cos \left(2 \pi 2000 t-\frac{\pi}{4}\right)
$$

(b)

$$
x(t)=3 \cos \left(2 \pi 12,000 t+\frac{\pi}{4}\right)
$$

What is $z(t)$?
Solution: $f_{a}=f-F_{s}=2000 \mathrm{~Hz}$, so $z_{a}=z=3 e^{j \pi / 4}$, and

$$
z(t)=3 \cos \left(2 \pi 2000 t+\frac{\pi}{4}\right)
$$

4. (25 points) Suppose that

$$
x[n]=\sin \left(\frac{\pi n}{2}\right)= \begin{cases}1 & n \text { is odd, and } \frac{n-1}{2} \text { is even } \\ -1 & n \text { is odd, and } \frac{n-1}{2} \text { is odd } \\ 0 & \text { otherwise }\end{cases}
$$

You would like to generate a continuous-time audio signal, $y(t)$, using the interpolation formula

$$
y(t)=\sum_{n=-\infty}^{\infty} x[n] g(t-n)
$$

In each of the following cases, specify the value of $y(t)$ over the range $0 \leq t \leq 4$. You may specify $y(t)$ by drawing a plot of the function (if your plot clearly shows the value at each point in time in the range $0 \leq t \leq 4$), or by using an equation or a set of cases.
(a) What is $y(t)$ if

$$
g(t)= \begin{cases}1 & -\frac{1}{2} \leq t \leq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Solution:

$$
y(t)= \begin{cases}1 & \frac{1}{2} \leq t \leq \frac{3}{2} \\ -1 & \frac{5}{2} \leq t \leq \frac{7}{2} \\ 0 & \text { otherwise }\end{cases}
$$

(b) What is $y(t)$ if

$$
g(t)= \begin{cases}1-|t| & |t| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Solution:

$$
y(t)= \begin{cases}t & 0 \leq t \leq 1 \\ 2-t & 1 \leq t \leq 3 \\ t-4 & 3 \leq t \leq 4\end{cases}
$$

(c) What is $y(t)$ if

$$
g(t)= \begin{cases}1 & t=0 \\ \frac{\sin (\pi t)}{\pi t} & \text { otherwise }\end{cases}
$$

Solution:

$$
y(t)=\sin \left(\frac{\pi t}{2}\right)
$$

