ECE 401 Signal and Image Analyais
Spring 2021

PRACTICE EXAM 3

Exam 3 will be held Tuesday, December 14, 8:00-11:00am

- This will a CLOSED BOOK exam.
- You will be permitted two sheets of handwritten notes, 8.5×11.
- Calculators and computers will not be permitted.
- Do not simplify explicit numerical expressions. The expression " $e^{-5} \cos (3)$ " is a MUCH better answer than "-0.00667".
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will be sent to you by e-mail and on zoom at exactly 8:00am; you will need to photograph and upload your answers by exactly 11:00am.
- There will be a total of 200 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Name:

1. (20 points) Consider the following signal:

$$
x[n]=\delta[n-15]+\delta[n-30]
$$

(a) $X[k]$ is the 32 -point DFT of $x[n]$. Specify $X[k]$ as a function of k.

Solution:

$$
X[k]=e^{-j \frac{30 \pi k}{32}}+e^{-j \frac{60 \pi k}{32}}
$$

(b) Suppose that $h[n]$ is defined as follows:

$$
h[n]= \begin{cases}e^{-n / 14} & 0 \leq n \leq 14 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that $H[k]$ is the 32-point DFT of $h[n], Y[k]=H[k] X[k]$, and $y[n]$ is the inverse DFT of $Y[k]$. Find $y[n]$.

Solution:

$$
y[n]= \begin{cases}e^{-(n+2) / 14} & 0 \leq n \leq 12 \\ e^{-(n-15) / 14} & 15 \leq n \leq 29 \\ e^{-(n-30) / 14} & 30 \leq n \leq 31\end{cases}
$$

2. (20 points) Consider the following system. The input of this system is $x[n]$, and the output is $y[n]$:

$$
\begin{aligned}
v[n] & =x[n]+0.9 v[n-1] \\
y[n] & =v[n]-0.7 y[n-1]
\end{aligned}
$$

(a) What is the system function, $H(z)$, for this system?

Solution:

$$
H(z)=\frac{1}{\left(1-0.9 z^{-1}\right)\left(1+0.7 z^{-1}\right)}
$$

(b) What is the impulse response of this system?

Solution:

$$
\begin{aligned}
\frac{1}{\left(1-0.9 z^{-1}\right)\left(1+0.7 z^{-1}\right)} & =\frac{C_{1}}{1-0.9 z^{-1}}+\frac{C_{2}}{1+0.7 z^{-1}} \\
1 & =C_{1}\left(1+0.7 z^{-1}\right)+C_{2}\left(1-0.9 z^{-1}\right) \\
1 & =C_{1}(1+0.7 / 0.9)=C_{1}(16 / 9) \\
1 & =C_{2}(1-0.9 /(-0.7))=C_{2}(16 / 7)
\end{aligned}
$$

So $C_{1}=\frac{9}{16}, C_{2}=\frac{7}{16}$, and

$$
h[n]=\left(\frac{9}{16}\right)(0.9)^{n} u[n]+\left(\frac{7}{16}\right)(-0.7)^{n} u[n]
$$

3. (20 points) A flute player is playing a middle-A note. This system can be well modeled by blowing white noise through a damped resonator with a resonant frequency of 440 Hz , and a bandwidth of 20 Hz . Suppose you want to synthesize this flute digitally, by blowing white noise through a second-order damped resonator, with a sampling frequency of $F_{s}=10,000 \mathrm{~Hz}$.
(a) You want to implement the resonator as

$$
y[n]=x[n]+a_{1} y[n-1]+a_{2} y[n-2]
$$

What are a_{1} and a_{2} ?

Solution: The resonant frequency and half-bandwidth are

$$
\begin{aligned}
\omega_{1} & =\frac{2 \pi 440}{10,000} \\
\sigma_{1} & =\frac{2 \pi 10}{10,000}
\end{aligned}
$$

So the system function is

$$
H(z)=\frac{1}{\left(1-e^{-\frac{2 \pi 10}{10000}+j \frac{2 \pi 440}{10000}} z^{-1}\right)\left(1-e^{-\frac{2 \pi 10}{10000}-j \frac{2 \pi 440}{10000}} z^{-1}\right)}
$$

$a_{1}=\left(p_{1}+p_{1}^{*}\right)$, and $a_{2}=-\left|p_{1}\right|^{2}$, so

$$
\begin{aligned}
& a_{1}=2 e^{-\frac{2 \pi 10}{10000}} \cos \left(\frac{2 \pi 440}{10000}\right) \\
& a_{2}=-e^{-\frac{4 \pi 10}{10000}}
\end{aligned}
$$

(b) Suppose you have succeeded in implementing the digital filter. Now you give it the input $x[n]=\delta[n]$. What is the output?

Solution: The output is $h[n]$, which is

$$
h[n]=\frac{1}{\sin \left(\omega_{1}\right)} e^{-\sigma_{1} n} \sin \left(\omega_{1}(n+1)\right) u[n]
$$

where

$$
\begin{aligned}
\omega_{1} & =\frac{2 \pi 440}{10,000} \\
\sigma_{1} & =\frac{2 \pi 10}{10,000}
\end{aligned}
$$

4. (20 points) You have recorded an electrocardiogram signal, $x[n]$, with a sampling frequency of $F_{s}=$ $1.2 k H z$. Unfortunately, it has been corrupted by power line noise: it has a big sinusoidal component at 60 Hz . Fortunately, you know how to eliminate power line noise using a notch filter. All you have to do is to pass the signal through a difference equation:

$$
\begin{equation*}
y[n]=x[n]+b_{1} x[n-1]+b_{2} x[n-2]-a_{1} y[n-1]-a_{2} y[n-2] \tag{1}
\end{equation*}
$$

Use a pole amplitude of 0.98 . What are b_{1}, b_{2}, a_{1}, and a_{2} ?
(Note: leave your answer in the form of an explicit numerical expression. For example, if you discover that $a_{1}=(0.3)^{2} \sin (2 \pi / 400)$, then you should leave it in that form instead of trying to simplify.)

Solution:

$$
\begin{aligned}
& b_{1}=-2 \cos (2 \pi 60 / 1200) \\
& b_{2}=1 \\
& a_{1}=-2(0.98) \cos (2 \pi 60 / 1200) \\
& a_{2}=(0.98)^{2}
\end{aligned}
$$

5. (10 points) Consider the signal $x(t)=-2+\sin (40 \pi t)$. Suppose we sample this signal at $F_{s}=100 \mathrm{~Hz}$, then take a length-20 DFT of 20 samples of this signal. For which values of $k, 0 \leq k \leq 19$, will the DFT samples $X[k]$ be nonzero?

Solution: The discrete-time signal will be

$$
x[n]=-2+\sin \left(\frac{40 \pi n}{100}\right)=-2+\sin (0.4 \pi n)
$$

The DTFT is nonzero at frequencies $\omega \in\{0,0.4 \pi, 1.6 \pi\}$. The DTFT computes samples at $\omega_{k}=$ $\frac{2 \pi k}{20}=0.1 \pi k$, so it is nonzero for $k \in\{0,4,16\}$.
6. (20 points) Determine whether the following LTI system is causal and/or BIBO stable:

$$
y[n]=x[n+1]+y[n-1]
$$

(a) Is it causal? Describe your reasoning in words.

Solution: No. $y[n]$ depends on $x[n+1]$, which is in the future, therefore this system is not causal.
(b) Is it stable? Prove your answer.

Solution: No. The system function is

$$
H(z)=\frac{z}{1-z^{-1}}
$$

There is a pole at $z=1$, which does not meet the criterion $|z|<1$, therefore it is unstable.
7. (20 points) A particular system generates an output $y[n]$ from its input $x[n]$ according to the following rule:

$$
y[n]= \begin{cases}x[n] & n \text { is even } \\ \frac{1}{2}(x[n-1]+x[n+1]) & n \text { is odd }\end{cases}
$$

(a) Is the system causal? Give your reason.

Solution: No. When n is odd, $y[n]$ is the average of $x[n-1]$ (which is in the past) and $x[n+1]$ (which is in the future). Since it depends on a future input, it is not causal.
(b) Is the system stable? Give your reason.

Solution: Yes. For every finite input signal $(|x[n]| \leq M$ for some finite $M)$, the corresponding output signal is also finite $(|y[n]| \leq M$ for the same M), so the system is stable.
8. (15 points) A signal is corrupted with narrowband noise at $\omega_{n}=\frac{\pi}{6}$ radians/sample. To remove the noise, you create a notch filter with a pole magnitude of $r=0.9$. The filter system function is

$$
H(z)=\frac{\left(1-r_{1} z^{-1}\right)\left(1-r_{2} z^{-1}\right)}{\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)}
$$

Speciy the poles and zeros in magnitude/phase form (e.g., $p_{1}=m e^{j \theta}$, but you should specify the numerical value of m and the numerical value of θ).

Solution:

$$
\begin{aligned}
& r_{1}=e^{j \pi / 6} \\
& r_{2}=\square e^{-j \pi / 6} \\
& p_{1}=\square .9 e^{e^{j \pi / 6}} \\
& p_{2}=0.9 e^{-j \pi / 6} \\
&
\end{aligned}
$$

9. (15 points) Suppose you want to implement a filter with the following frequency response:

$$
H(\omega)=\frac{\left(1-0.5 e^{j \pi / 4} e^{-j \omega}\right)\left(1-0.5 e^{-j \pi / 4} e^{-j \omega}\right)}{\left(1+0.5 e^{j \pi / 4} e^{-j \omega}\right)\left(1+0.5 e^{-j \pi / 4} e^{-j \omega}\right)}
$$

You realize that you can get this frequency response by writing one line of code in matlab, implementing the following equation:

$$
y[n]=x[n]+b_{1} x[n-1]+b_{2} x[n-2]+a_{1} y[n-1]+a_{2} y[n-2]
$$

Find the filter coefficients.

10. (30 points) Suppose you have a signal sampled at $F_{s}=600$ samples/second. You wish to create a notch filter to eliminate a noise component at 60 Hz . You choose to do this using the following filter:

$$
H(z)=\frac{\left(1-r_{1} z^{-1}\right)\left(1-r_{2} z^{-1}\right)}{\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)}
$$

(a) Specify the values of the poles p_{1}, p_{2} and the zeros r_{1}, r_{2}. Note that there is one free parameter in your answer that is not specified by the problem statement; you may set that free parameter to any reasonable value.

Solution: $r_{1}=e^{j \pi / 5}, r_{2}=e^{-j \pi / 5}, p_{1}=0.99 e^{j \pi / 5}, p_{2}=0.99 e^{-j \pi / 5}$
(b) Now suppose you are given a system function

$$
H(z)=\frac{\left(1-r_{1} z^{-1}\right)\left(1-r_{2} z^{-1}\right)}{\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)}
$$

and you wish to implement this using the equation

$$
y[n]=x[n]+b_{1} x[n-1]+b_{2} x[n-2]+a_{1} y[n-1]+a_{2} y[n-2]
$$

Find b_{1}, b_{2}, a_{1} and a_{2} in terms of r_{1}, r_{2}, p_{1} and p_{2}.
Solution: $b_{1}=-\left(r_{1}+r_{2}\right), b_{2}=r_{1} r_{2}, a_{1}=\left(p_{1}+p_{2}\right), a_{2}=-p_{1} p_{2}$

