ECE 401 Signal and Image Analyais
Spring 2021

EXAM 2

Monday, November 1, 2021

- This is a CLOSED BOOK exam.
- You are permitted one sheet of handwritten notes, 8.5×11.
- Calculators and computers are not permitted.
- Do not simplify explicit numerical expressions. The expression " $e^{-5} \cos (3)$ " is a MUCH better answer than "-0.00667".
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will appear on Gradescope at exactly $1: 00 \mathrm{pm}$; you will need to photograph and upload your answers by exactly 2:00pm.
- There will be a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Name:

Convolution

$$
h[n] * x[n]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

Frequency Response

$$
\begin{aligned}
H(\omega) & =\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n} \\
h[n] * \cos (\omega n) & =|H(\omega)| \cos (\omega n+\angle H(\omega))
\end{aligned}
$$

Rectangular Window and Ideal LPF

$$
\begin{gathered}
w_{R}[n]=\left\{\begin{array}{ll}
1 & 0 \leq n \leq N-1 \\
0 & \text { otherwise }
\end{array} \leftrightarrow W_{R}(\omega)=e^{-\frac{j \omega(N-1)}{2}} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)}\right. \\
h_{\text {ideal }}[n]=\frac{\omega_{c}}{\pi} \operatorname{sinc}\left(\omega_{c} n\right) \leftrightarrow H_{\text {ideal }}(\omega)= \begin{cases}1 & |\omega|<\omega_{c} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Hamming Window

$$
w_{H}[n]= \begin{cases}0.54-0.46 \cos \left(\frac{2 \pi n}{N-1}\right) & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}
$$

1. (20 points) Consider the following filter:

$$
h[n]= \begin{cases}1 & -6 \leq n \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Sketch $|H(\omega)|$ as a function of ω, for $-\pi<\omega<\pi$. Label the amplitude at $\omega=0$, and at least two of the frequencies at which $|H(\omega)|=0$.

Solution:

$$
|H(\omega)|=\left|\frac{\sin (9 \omega / 2)}{\sin (\omega / 2)}\right|
$$

The amplitude at $\omega=0$ is $9 .|H(\omega)|=0$ at the frequencies $\omega=\frac{2 \pi k}{9}$, for any integer k that is not a multiple of 9 .
2. (20 points) Consider the following filter:

$$
h[n]= \begin{cases}1 & -6 \leq n \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Design a filter $g[n]$ such that $F(\omega)$ is real valued (i.e., its imaginary part is zero, $\Im\{F(\omega)\}=0$), where

$$
f[n]=g[n] * h[n]
$$

Solution:

$$
g[n]=\delta[n-2]
$$

3. (20 points) The signal $x(t)=\cos (2 \pi 800 t)$ is sampled at $F_{s}=8000$ samples/second, then processed by the filter

$$
y[n]=\frac{1}{7} \sum_{m=-3}^{3} x[n-m]
$$

The resulting signal is $y[n]=A \cos (\omega n+\theta)$. What are A, ω, and θ ?

	$A=$
Solution:$\begin{aligned} A & =\frac{\sin (2 \pi 800 \times 7 /(2 \times 8000))}{7 \sin (2 \pi 800 /(2 \times 8000))} \\ & =\frac{\sin (7 \pi / 10)}{7 \sin (\pi / 10)} \end{aligned}$	
	$\omega=$
Solution:	$\omega=\frac{2 \pi 800}{8000}=\frac{\pi}{5}$
	$\theta=$
Solution:	

4. (20 points) Consider the system

$$
y[n]=\frac{1}{4} x[n+2]+\frac{1}{2} x[n+1]+x[n]-x[n-1]-\frac{1}{2} x[n-2]-\frac{1}{4} x[n-3]
$$

Sketch the impulse response of this system as a function of n, for $-5 \leq n \leq 5$. Clearly label the values of every nonzero sample.

Solution: The non-zero samples are

$$
h[n]= \begin{cases}\frac{1}{4} & n=-2 \\ \frac{1}{2} & n=-1 \\ 1 & n=0 \\ -1 & n=1 \\ -\frac{1}{2} & n=2 \\ -\frac{1}{4} & n=3\end{cases}
$$

5. (20 points) You want to approximate the following ideal bandpass filter:

$$
H_{\text {ideal }}(\omega)= \begin{cases}1 & 0.3 \pi<|\omega|<0.4 \pi \\ 0 & \text { otherwise }\end{cases}
$$

Design an FIR filter $h[n]$ that is exactly 64 samples long, such that $|H(\omega)| \approx\left|H_{\text {ideal }}(\omega)\right|$. Window $h[n]$ in such a way that the first sidelobe has a level of less than -40 dB relative to the mainlobe.

$$
h[n]=
$$

Solution:

$$
h[n]=w_{H}[n](0.4 \operatorname{sinc}(0.4 \pi(n-31.5))-0.3 \operatorname{sinc}(0.3 \pi(n-31.5)))
$$

where

$$
w_{H}[n]= \begin{cases}0.54-0.46 \cos \left(\frac{2 \pi n}{63}\right) & 0 \leq n \leq 63 \\ 0 & \text { otherwise }\end{cases}
$$

