ECE 401 Signal and Image Analyais
Spring 2021

EXAM 1

Monday, September 27, 2021

- This is a CLOSED BOOK exam.
- You are permitted one sheet of handwritten notes, 8.5×11.
- Calculators and computers are not permitted.
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will appear on Gradescope at exactly 1:00pm; you will need to photograph and upload your answers by exactly 2:00pm.
- There will be a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Name: \qquad

Phasors

$$
A \cos (2 \pi f t+\theta)=\Re\left\{A e^{j \theta} e^{j 2 \pi f t}\right\}=\frac{1}{2} e^{-j \theta} e^{-j 2 \pi f t}+\frac{1}{2} e^{j \theta} e^{j 2 \pi f t}
$$

Spectrum

$$
\text { Scaling: } y(t)=G x(t)=\sum_{k=-N}^{N}\left(G a_{k}\right) e^{j 2 \pi f_{k} t}
$$

Add a Constant: $y(t)=x(t)+C=\left(a_{0}+C\right)+\sum_{k \neq 0} a_{k} e^{j 2 \pi f_{k} t}$
Add Signals: If $f_{k}=f_{n}^{\prime}=f_{m}^{\prime \prime}$ then $a_{k}=a_{n}^{\prime}+a_{m}^{\prime \prime}$
Time Shift: $y(t)=x(t-\tau)=\sum_{k=-N}^{N}\left(a_{k} e^{-j 2 \pi f_{k} \tau}\right) e^{j 2 \pi f_{k} t}$
Frequency Shift: $y(t)=x(t) e^{j 2 \pi F t}=\sum_{k=-N}^{N} a_{k} e^{j 2 \pi\left(f_{k}+F\right) t}$

$$
\text { Differentiation: } y(t)=\frac{d x}{d t}=\sum_{k=-N}^{N}\left(j 2 \pi f_{k} a_{k}\right) e^{j 2 \pi f_{k} t}
$$

Fourier Series

$$
\begin{aligned}
\text { Analysis: } X_{k} & =\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k t / T_{0}} d t \\
\text { Synthesis: } x(t) & =\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}
\end{aligned}
$$

Sampling and Interpolation:

$$
\begin{aligned}
& x[n]=x\left(t=\frac{n}{F_{s}}\right) \\
& f_{a}=\min \left(f \bmod F_{s},-f \bmod F_{s}\right) \\
& z_{a}= \begin{cases}z & f \bmod F_{s}<-f \bmod F_{s} \\
z^{*} & f \bmod F_{s}>-f \bmod F_{s}\end{cases} \\
& y(t)=\sum_{n=-\infty}^{\infty} y[n] p\left(t-n T_{s}\right)
\end{aligned}
$$

1. (20 points) Suppose that

$$
x(t)=3 \cos \left(2000 \pi\left(t-\frac{1}{8000}\right)\right)+4 \sin (2000 \pi t)=M \cos (2000 \pi t+\theta)
$$

Find x and y such that $M=\sqrt{x^{2}+y^{2}}$ and $\theta=\operatorname{atan}(y / x)$.

Solution:

$$
\begin{aligned}
x(t) & =3 \cos \left(2000 \pi t-\frac{\pi}{4}\right)+4 \cos \left(2000 \pi t-\frac{\pi}{2}\right) \\
& =\Re\left\{\left(3 e^{-j \pi / 4}+4 e^{-j \pi / 2}\right) e^{j 2000 \pi t}\right\}
\end{aligned}
$$

So

$$
\begin{aligned}
& x=3 \cos (-\pi / 4)+4 \cos (-\pi / 2)=\frac{3 \sqrt{2}}{2} \\
& y=3 \sin (-\pi / 4)+4 \sin (-\pi / 2)=-\frac{3 \sqrt{2}}{2}-4
\end{aligned}
$$

2. (20 points) $x(t)$ is a triangle wave with fundamental frequency of $F_{0}=100 \mathrm{~Hz}$, and Fourier series coefficients of

$$
X_{k}= \begin{cases}\frac{1}{2} & k=0 \\ \frac{1}{j 2 \pi k^{2}}(-1)^{\frac{|k|-1}{2}} & k \text { odd } \\ 0 & k \neq 0, k \text { even }\end{cases}
$$

The signal $y(t)$ is created by delaying $x(t)$ by 0.001 seconds, then differentiating it, i.e.,

$$
y(t)=\frac{d x(t-0.001)}{d t}
$$

What are the Fourier series coefficients Y_{k} ?

Solution: Applying the spectral properties, we get

$$
Y_{k}= \begin{cases}0 & k=0 \\ \frac{100}{k}(-1)^{\frac{|k|-1}{2}} e^{-j 0.2 \pi k} & k \text { odd } \\ 0 & k \neq 0, k \text { even }\end{cases}
$$

3. (20 points) $x(t)$ is a signal with a period of 4 seconds, and with the following shape:

$$
x(t)= \begin{cases}1 & 0<t<1 \\ 0 & 1<t<2 \\ -2 & 2<t<3 \\ 0 & 3<t<4\end{cases}
$$

(a) What is F_{0} ?

Solution:

$$
F_{0}=\frac{1}{4} \mathrm{~Hz}
$$

(b) What is X_{0}, the $0^{\text {th }}$ Fourier coefficient?

Solution:

$$
X_{0}=\frac{1}{4} \int_{0}^{4} x(t) d t=-\frac{1}{4}
$$

(c) What are the Fourier series coefficients X_{k} for $k \neq 0$?

Solution:

$$
\begin{aligned}
X_{k} & =\frac{1}{4} \int_{0}^{4} x(t) e^{-j 2 \pi k t / 4} d t \\
& =\frac{1}{4}\left(\int_{0}^{1} e^{-j 2 \pi k t / 4} d t-2 \int_{2}^{3} e^{-j 2 \pi k t / 4} d t\right) \\
& =\frac{1}{4}\left(\frac{1}{-j 2 \pi k / 4}\right)\left(\left[e^{-j 2 \pi k t / 4}\right]_{0}^{1}-2\left[e^{-j 2 \pi k t / 4}\right]_{2}^{3}\right) \\
& =\left(\frac{1}{-j 2 \pi k}\right)\left(e^{-j 2 \pi k / 4}-1-2 e^{-j 6 \pi k / 4}+2 e^{-j 4 \pi k / 4}\right)
\end{aligned}
$$

4. (20 points) Suppose $x(t)$ is sampled to create the signal $y[n]=x\left(\frac{n}{F_{s}}\right)$, with a sampling frequency of $F_{s}=8000$ samples/second. The signal $y[n]$ is then passed through an ideal D / A in order to produce the signal $z(t)$. In each of the two following cases, what is $z(t)$?
(a)

$$
x(t)=3 \cos (2 \pi 8000 t)
$$

Solution:

$$
\begin{aligned}
& y[n]=3 \cos (2 \pi 8000 n / 8000)=3 \\
& z(t)=3
\end{aligned}
$$

(b)

$$
x(t)=2 \cos \left(2 \pi 4800 t+\frac{\pi}{4}\right)
$$

Solution:

$$
\begin{aligned}
y[n] & =2 \cos \left(\frac{2 \pi 4800 n}{8000}+\frac{\pi}{4}\right) \\
& =2 \cos \left(\frac{2 \pi 3200 n}{8000}-\frac{\pi}{4}\right) \\
z(t) & =2 \cos \left(2 \pi 3200 t-\frac{\pi}{4}\right)
\end{aligned}
$$

5. (20 points) Suppose that $x[n]$ is an audio signal sampled at $F_{s}=10,000$ samples/second. You would like to generate a continuous-time audio signal, $y(t)$, using the interpolation formula

$$
y(t)=\sum_{n=-\infty}^{\infty} x[n] g\left(t-\frac{n}{10000}\right)
$$

You are considering several different levels of quality. In each of the following cases, write an equation for $g(t)$, or sketch it as a function of t. If you sketch $g(t)$, you must label its amplitude, and at least two of its zero-crossings.
(a) Suppose you want $y(t)$ to be a piece-wise constant interpolation of $x[n]$. What value of $g(t)$ would make this true?

Solution:

$$
g(t)= \begin{cases}1 & 0 \leq t<\frac{1}{10000} \\ 0 & \text { otherwise }\end{cases}
$$

(b) Suppose you want $y(t)$ to be a piece-wise linear interpolation of $x[n]$. What value of $g(t)$ would make this true?

Solution:

$$
g(t)= \begin{cases}1-10000|t| & -\frac{1}{10000} \leq t \leq \frac{1}{10000} \\ 0 & \text { otherwise }\end{cases}
$$

(c) Suppose you want $y(t)$ to be a perfectly bandlimited reconstruction of of $x[n]$, with energy only in the frequency band $-5000 \leq f \leq 5000$. What value of $g(t)$ would make this true?

Solution:

$$
g(t)=\frac{\sin (10000 \pi t}{10000 \pi t}
$$

