\qquad

Problem 1 (25 points)

Each of the following is sampled at $F_{s}=10000$ samples/second, producing either $x[n]=$ constant, or $x[n]=\cos \omega n$ for some value of ω. Specify the constant if possible; otherwise, specify ω such that $-\pi \leq \omega<\pi$.
(a) $x(t)=\cos (2 \pi 900 t)$

Solution: $\omega=\frac{9 \pi}{50}$
(b) $x(t)=\cos (2 \pi 10000 t)$

Solution: $x[n]=1$
(c) $x(t)=\cos (2 \pi 11000 t)$

Solution: $\omega=\frac{\pi}{5}$

Problem 2 (25 points)

Consider the signal

$$
x(t)=2 \cos (2 \pi 440 t)-3 \sin (2 \pi 440 t)
$$

This signal can also be written as $x(t)=A \cos (\omega t+\theta)$ for some $A=\sqrt{M}, \omega$, and $\theta=\operatorname{atan}(R)$. Find M, ω, and R.

Solution:

$$
\begin{aligned}
A & =\sqrt{13} \quad(M=13) \\
\omega & =2 \pi 440 \\
\theta & =\operatorname{atan}\left(\frac{3}{2}\right) \quad\left(R=\frac{3}{2}\right)
\end{aligned}
$$

Problem 3 (25 points)

A signal $x(t)$ is periodic with $T_{0}=0.02$ seconds, and its values are specified by

$$
x(t)= \begin{cases}-1 & 0 \leq t \leq 0.01 \\ 0 & 0.01<t<0.02\end{cases}
$$

Its CTFS representation is defined by

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \omega_{0} t}
$$

(a) Sketch $x(t)$ as a function of t for $0 \leq t \leq 0.02$ seconds. Label at least one important tic mark, each, on the horizontal and vertical axes.
Solution: Useful tic marks include $t=0.01$ or $t=0.02$, and $x(t)=-1$ between 0 and 0.01 .
(b) What is ω_{0} ?

Solution: $\omega_{0}=100 \pi$
\qquad
(c) Find X_{0} without doing any integral.

Solution: $X_{0}=-\frac{1}{2}$
(d) Find X_{k} for all the other values of k, i.e., for $k \neq 0$. Simplify; your answer should have no exponentials in it.
Solution: $X_{k}=0$ for even $k, X_{k}=\frac{j}{k \pi}$ for odd k.

Problem 4 (25 points)
Consider the signal

$$
x[n]= \begin{cases}\left(\frac{1}{2}\right)^{n} & n \geq 0 \\ 0 & n<0\end{cases}
$$

(a) Find the DTFT, $X(\omega)$.

Solution: $X(\omega)=\frac{1}{1-\frac{1}{2} e^{-j \omega}}$
(b) Find the power spectrum $|X(\omega)|^{2}$, and sketch it for $-\pi \leq \omega \leq \pi$. Specify its values at $\omega=0, \omega=\frac{\pi}{2}$, and $\omega=\pi$.
Solution: $|X(\omega)|^{2}=\frac{1}{\frac{5}{4}-\cos \omega} \cdot|X(0)|^{2}=4,\left|X\left(\frac{\pi}{2}\right)\right|^{2}=\frac{4}{5},|X(\pi)|^{2}=\frac{4}{9}$.

