UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 498MH Principles of Signal Analysis
Fall 2014

MIDTERM EXAM

Friday, October 3, 2014

- This is a CLOSED BOOK exam.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
Total	

Name: \qquad

Problem 1 (25 points)

Each of the following is sampled at $F_{s}=10000$ samples/second, producing either $x[n]=$ constant, or $x[n]=\cos \omega n$ for some value of ω. Specify the constant if possible; otherwise, specify ω such that $-\pi \leq \omega<\pi$.
(a) $x(t)=\cos (2 \pi 900 t)$
(b) $x(t)=\cos (2 \pi 10000 t)$
(c) $x(t)=\cos (2 \pi 11000 t)$

Problem 2 (25 points)

Consider the signal

$$
x(t)=2 \cos (2 \pi 440 t)-3 \sin (2 \pi 440 t)
$$

This signal can also be written as $x(t)=A \cos (\omega t+\theta)$ for some $A=\sqrt{M}, \omega$, and $\theta=\operatorname{atan}(R)$. Find M, ω, and R.
\qquad

Problem 3 (25 points)

A signal $x(t)$ is periodic with $T_{0}=0.02$ seconds, and its values are specified by

$$
x(t)= \begin{cases}-1 & 0 \leq t \leq 0.01 \\ 0 & 0.01<t<0.02\end{cases}
$$

Its CTFS representation is defined by

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \omega_{0} t}
$$

(a) Sketch $x(t)$ as a function of t for $0 \leq t \leq 0.02$ seconds. Label at least one important tic mark, each, on the horizontal and vertical axes.
(b) What is ω_{0} ?
(c) Find X_{0} without doing any integral.

PROBLEM 3 CONTINUED

(d) Find X_{k} for all the other values of k, i.e., for $k \neq 0$. Simplify; your answer should have no exponentials in it.
\qquad

Problem 4 (25 points)
Consider the signal

$$
x[n]= \begin{cases}\left(\frac{1}{2}\right)^{n} & n \geq 0 \\ 0 & n<0\end{cases}
$$

(a) Find the DTFT, $X(\omega)$.
\qquad

PROBLEM 4 CONTINUED

(b) Find the power spectrum $|X(\omega)|^{2}$, and sketch it for $-\pi \leq \omega \leq \pi$. Specify its values at $\omega=0, \omega=\frac{\pi}{2}$, and $\omega=\pi$.

