# UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 

Department of Electrical and Computer Engineering

ECE 498MH Principles of Signal Analysis
Fall 2013

## FINAL EXAM SOLUTIONS

Friday, December 13, 2013

- This is a CLOSED BOOK exam. You may use three pages (front and back) of your own notes, and you may use a calculator if you wish.
- There are a total of 200 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

| Problem | Score | Problem | Score |
| :---: | :---: | :---: | :---: |
| 1 |  | 6 |  |
| 2 |  | 7 |  |
| 3 |  | 8 |  |
| 4 |  | 9 |  |
| 5 |  | 10 |  |
| Total |  | Total |  |

Name: $\qquad$

## Useful Angles

| $\theta$ | $\cos \theta$ | $\sin \theta$ | $e^{j \theta}$ |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 |
| $\pi / 6$ | $\sqrt{3} / 2$ | $1 / 2$ | $\sqrt{3} / 2+j / 2$ |
| $\pi / 4$ | $\sqrt{2} / 2$ | $\sqrt{2} / 2$ | $\sqrt{2} / 2+j \sqrt{2} / 2$ |
| $\pi / 3$ | $1 / 2$ | $\sqrt{3} / 2$ | $1 / 2+j \sqrt{3} / 2$ |
| $\pi / 2$ | 0 | 1 | $j$ |
| $\pi$ | -1 | 0 | -1 |
| $3 \pi / 2$ | 1 | -1 | $-j$ |
| $2 \pi$ | 1 | 0 | 1 |

## Useful DTFTs

$$
\begin{aligned}
x[n]=a^{n} u[n] & \leftrightarrow X(\omega)=\frac{1}{1-a z^{-1}} \\
x[n]=\delta[n-k] & \leftrightarrow X(\omega)=e^{-j \omega k} \\
x[n]=e^{j \theta n} & \leftrightarrow X(\omega)=2 \pi \delta(\omega-\theta) \\
x[n]=\left(\frac{\omega_{c}}{\pi}\right) \operatorname{sinc}\left(\omega_{c} n\right) & \leftrightarrow X(\omega)= \begin{cases}1 & |\omega|<\omega_{c} \\
0 & \text { otherwise }\end{cases} \\
x[n]= \begin{cases}1 & |n| \leq M \\
0 & \text { otherwise }\end{cases} & \leftrightarrow X(\omega)=\frac{\sin (\omega(2 M+1) / 2)}{\sin (\omega / 2)}
\end{aligned}
$$

$\qquad$

## Problem 1 (20 points)

$$
6 \cos \left(2 \pi 1000\left(t-\frac{1}{4000}\right)\right)+6 \sin \left(2 \pi 1000\left(t-\frac{1}{4000}\right)\right)=A \cos (\Omega t+\phi)
$$

Find the following quantitites:

## Solution:

$$
\begin{aligned}
& \begin{array}{l}
A=\begin{array}{r}
6 \sqrt{2} \\
\Omega= \\
\\
\Omega=
\end{array}
\end{array} \\
& \phi=\quad-\frac{3 \pi}{4}
\end{aligned}
$$

$\qquad$

## Problem 2 (20 points)

A periodic signal $x(t)$, with period $T_{0}$, is given by

$$
x(t)= \begin{cases}1 & 0 \leq t \leq \frac{3 T_{0}}{4} \\ 0 & \frac{3 T_{0}}{4}<t<T_{0}\end{cases}
$$

The same signal can be expressed as a Fourier series:

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}
$$

Find $\left|X_{2}\right|$, the amplitude of the second harmonic.

## Solution:

$$
\left|X_{2}\right|=\frac{1}{2 \pi}
$$

$\qquad$

## Problem 3 (20 points)

A particular system generates an output $y[n]$ from its input $x[n]$ according to the following rule:

$$
y[n]= \begin{cases}x[n] & n \text { is even } \\ \frac{1}{2}(x[n-1]+x[n+1]) & n \text { is odd }\end{cases}
$$

(a) ( 6 points) Is the system linear? Give your reason.
(b) (4 points) Is the system causal? Give your reason.
$\qquad$
(c) ( 6 points) Is the system time-invariant? Give your reason.
(d) (4 points) Is the system stable? Give your reason.
$\qquad$

## Problem 4 (20 points)

Find $y[n]=h[n] * x[n]$, where

$$
x[n]=\cos (0.02 \pi n), \quad h[n]= \begin{cases}1 & |n| \leq 3 \\ 0 & |n|>3\end{cases}
$$

What is $y[n]$ ? Hint: Find $H(\omega)$ first. In order to find the numerical value of your answer, you may find it useful to approximate $\sin x \approx x$, an approximation that works for small values of $x$.
$\qquad$

Problem 5 (20 points)
Find $y[n]=h[n] * x[n]$, where

$$
x[n]=\left\{\begin{array}{ll}
1 & n \geq 0 \\
0 & n<0
\end{array}, \quad h[n]= \begin{cases}1 & |n| \leq 3 \\
0 & |n|>3\end{cases}\right.
$$

What is $y[n]$ ?
$\qquad$

## Problem 6 (20 points)

## Suppose

$$
x[n]=\cos \left(\frac{7 \pi n}{21}\right), \quad y[n]=\left\{\begin{array}{ll}
x[n] & |n| \leq 10 \\
0 & \text { otherwise }
\end{array}, \quad Y(\omega)=\sum_{n=-\infty}^{\infty} y[n] e^{-j \omega n}\right.
$$

Sketch $Y(\omega)$ for $-\pi \leq \omega \leq \pi$. Specify the frequency and amplitude of at least one peak. Also, specify at least three particular frequencies $\omega$ such that $Y(\omega)=0$.

## Problem 7 (20 points)

You have a $250 \times 250$ image that you want to upsample to $250 \times 1000$ without introducing any aliasing. If $x[n]$ is a row of the original image, and $y[n]$ is a row of the upsampled image, this task can be accomplished by

$$
y[n]=\sum_{m=0}^{249} x[m] g[n-4 m]
$$

Sketch $g[n]$ as a function of $n$. Show the value of $g[0]$, and specify at least three particular sample indices, $n$, at which $g[n]=0$.
$\qquad$

## Problem 8 (20 points)

An 8000 Hz tone, $x(t)=\cos (2 \pi 8000 t)$, is sampled at $F_{s}=\frac{1}{T}=10,000$ samples $/$ second in order to create $x[n]=x(n T)$. Sketch $X(\omega)$ for $0 \leq \omega \leq 2 \pi$ (note the domain!!). Specify the frequencies at which $X(\omega) \neq 0$.

## Solution:

$X(\omega)$ is a spectrum with energy at the frequencies $(0.4 \pi, 1.6 \pi)$.
$\qquad$

## Problem 9 (20 points)

Suppose $x[n]$ is a random signal with the following autocorrelation:

$$
R_{x x}[\tau]=\frac{1}{16} \operatorname{sinc}^{2}\left(\frac{\pi n}{4}\right)=\left(\frac{\sin (\pi n / 4)}{\pi n}\right)^{2}
$$

Suppose $e[n]=x[n]-a x[n-1]$, and you want to find $a$ in order to minimize $E\left[e^{2}[n]\right]$. Find the numerical value of $a$ ("numerical" in the sense that there are no variables in your answer, however, your answer may include constants like $\pi$ and $\sqrt{2}$ ).
$\qquad$

## Problem 10 (20 points)

Suppose $y[n]=x[n]+v[n] . v[n]$ is zero-mean, unit-variance white noise uncorrelated with $x[n]$, and $x[n]$ is a random signal whose power spectrum is given by

$$
P_{x x}(\omega)= \begin{cases}\frac{\pi}{2}-|\omega| & |\omega| \leq \frac{\pi}{2} \\ 0 & \frac{\pi}{2} \leq|\omega| \leq \pi\end{cases}
$$

Suppose $z[n]=h[n] * y[n]$. Find $H(\omega)$ in order to minimize $E\left[(z[n]-x[n])^{2}\right]$.

