UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 498DLJ Principles of Signal Analysis
Fall 2011

MIDTERM EXAM

Friday, October 21, 2011

- This is a CLOSED BOOK exam.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
Total	

Name: \qquad

Problem 1 (20 points)

Calculate the Fourier series coefficients $a_{0}, a_{k}, b_{k}, k=1,2, \ldots$, for the periodic signal $x(t)=x(t+8)$:

$$
x(t)= \begin{cases}1, & 0 \leq t<1 \\ -1, & 1 \leq t \leq 3 \\ 0, & 3<t<8\end{cases}
$$

\qquad

Problem 2 (20 points)

Compute the Fourier transform of $y(t)$. Write your answer in the form $Y(\Omega)=j A(\Omega)$, for some real-valued function $A(\Omega)$. The function $A(\Omega)$ should have no complex exponentials in it, and no imaginary parts.

$$
y(t)= \begin{cases}0.25, & -1 \leq t<0 \\ -0.25, & 0 \leq t<1 \\ 0, & \text { elsewhere }\end{cases}
$$

\qquad

Problem 3 (20 points)

Start with the signal $x[n]=\delta[n]+\delta[n-1]$. Find the 4 -point DFT, $X[k]$, for $0 \leq k \leq 3$. Simplify, so that there are no complex exponentials left in your answer.
\qquad

Problem 4 (20 points)

Suppose that we have a signal bandlimited to 5 kHz . We want to digitally bandpass filter it to pass all signal components in the range $1000 \leq f \leq 2000 \mathrm{~Hz}$, where $\Omega=2 \pi f$, and to eliminate all other frequencies.
(a) What is the minimum F_{s} necessary to avoid aliasing?
(b) For the sampling rate F_{s} that you chose in part (a), what are the corresponding bandpass edges, ω_{l} and ω_{u}, of the discrete-time filter $H_{d}(\omega)$?
(c) Sketch the frequency response $H_{d}(\omega)$ of the desired filter, for $0 \leq \omega \leq 2 \pi$ (note the nonstandard frequency range over whch I have asked you to sketch the frequency response!!)
\qquad

Problem 5 (20 points)

Assume that $x[n]=x_{c}(n T)$, where $1 / T=10,000$ samples/second. For each of the following signals, find $x[n]$ and $X_{d}(\omega)$.
(a) $x_{c}(t)=0.2 \operatorname{sinc}(2000 \pi t)($ sinc, not $\sin !)$
(b) $y_{c}(t)=\cos (7000 \pi t)$.

