ECE 398GG

Homework 5 Solution

1. Convert the following instantaneous currents into phasors, using $\cos (\omega t)$ as the reference. State your answers in polar form.
(i) $\quad i(t)=400 \sqrt{2} \cos \left(\omega t-30^{\circ}\right)$
(ii) $\quad i(t)=5 \sin \left(\omega t+15^{\circ}\right)$
(iii) $\quad i(t)=4 \cos \left(\omega t-30^{\circ}\right)+5 \sqrt{2} \sin \left(\omega t+15^{\circ}\right)$

Solution: We make use of the relationship that $\sin (\mu)=\cos \left(90^{\circ}-\mu\right)$

$$
[400 \sqrt{2} / \sqrt{2}] \angle-30^{\circ}=400 \angle-30^{\circ}
$$

(i)
(ii)

$$
(5 / \sqrt{2}) \angle-75^{\circ}
$$

(iii)

$$
(4 / \sqrt{2}) \angle-30^{\circ}+(5 \sqrt{2} / \sqrt{2}) \angle-75^{\circ}=(2 \sqrt{2}) \angle-30^{\circ}+5 \angle-75^{\circ}=7.3 \angle-59^{\circ}
$$

2. Detemine the r.m.s. value of voltage for the sawtooth waveform below.

Solution: We define $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2} \boldsymbol{x}$ and compute the rms value for an arbitrary period

$$
\sqrt{\int_{0}^{1}\left[\frac{1}{1} *(2 x)^{2}\right] d x}=\frac{2}{\sqrt{3}}
$$

3. For the following $120-\mathrm{V}, 60-\mathrm{Hz}$ circuit, perform the following:

(i) Determine the reactance and the impedance of the inductor?
(ii) Express the impedance of the combination of R and L in both polar coordinates and rectangular $Z=R+j X$ form.
(iii) Determine the current expressed as a phasor and as a function of time.
(iv) Determine the power factor of the circuit.
(v) Calculate the output voltage expressed as a phasor and as a function of time.

Solution:

(i)

$$
\begin{aligned}
& X_{L}=\omega L=2 \pi \cdot 60 \cdot 0.1=37.7 \Omega \\
& Z_{L}=j \omega L=j 37.7=37.7 \angle 90^{\circ}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
Z_{\text {Tot }} & =R+j \omega L=100+j 37.7 \\
& =\sqrt{100^{2}+37.7^{2}} \angle \tan ^{-1}\left(\frac{37.7}{100}\right)=106.9 \angle 20.66^{\circ}
\end{aligned}
$$

(iii) the angle -20.66 is written incorrectly in the lines after the first equation
$I=\frac{V}{Z}=\frac{120 \angle 0^{\circ}}{106.9 \angle 20.66^{\circ}}=1.12 \angle-20.66^{\circ}$
$i=1.12 \sqrt{2} \cos \left(\omega t-20.22^{\circ}\right)=1.12 \sqrt{2} \cos \left(377 t-20.22^{\circ}\right)$
(iv)

$$
p . f .=\cos (-20.66)=0.94
$$

(v) The two evaluations

$$
V_{\text {out }}=Z_{L} I=j 37.7 \times 1.12 \angle-20.66=42.2 \angle 69.3
$$

OR...using the voltage divider approach:

$$
\begin{aligned}
& V_{\text {out }}=V_{\text {in }} \cdot \frac{\boldsymbol{Z}_{L}}{Z_{R}+Z_{L}}=120 \angle 0^{\circ} \cdot \frac{37.7 \angle 90^{\circ}}{106.9 \angle 20.66^{\circ}}=42.3 \angle 69.3^{\circ} \\
& v_{\text {out }}=42.3 \sqrt{2} \cos \left(\omega t+69.3^{\circ}\right)
\end{aligned}
$$

4. For the circuit shown below, perform the following:

(i) Compute the voltage across the load terminals
(ii) Determine the real power delivered to the load in terms of the voltage and current phasors at the load.
(iii) Calculate the real power delivered to the load via the power flow equation derived in class, under the assumption of a lossless transmission line.
(iv) Comment on the differences, if any, between the results in (ii) and (iii).

Solution:

(i) $\quad V_{\text {load }}=120 \quad 0-60 \quad 0 \times(0.1+j 0.5)=117 \quad-14.7^{\circ}$
(ii) $\quad P=V \times I \times \cos \left(\theta_{V}-\theta_{I}\right)=117 \times 60 \times \cos \left(-14.7^{\circ}-0\right)=6,790 W$
(iii) $P=\left[\left(V_{1} \times V_{2}\right) / x\right] \sin \left(\theta_{1}-\theta_{2}\right)=7,150 W$
(iv) Given that the power flow relation assumes a lossless line and this is not the case since there is a 0.1 ohm resistance, the answers are relatively close and so the order of magnitude of the difference is acceptable in this case.

