ECE 398GG - ELECTRICAL VEHICLES 2. Vehicle Basic Dynamics: Energy and Power Needs of Electric Vehicles

P. T. Krein

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Vehicle Basic Dynamics: Energy and Power Needs of Electric Vehicles

P. T. Krein

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, USA

Must do work against external forces to move

- Main power needs:
- Aerodynamic drag
- Tire loss
-Gravity
-Acceleration
- Others:
- "Hotel" loads
- Controls
-Overhead

Traction power for platform

Vehicle dynamics

- The governing needs come from basic physics, $f=m a$ (force, mass, acceleration).
- There are also rotating components, for which $T=J \alpha$ (torque, moment of inertia, angular acceleration).
- Rotation follows, write it out: $T=f r, J=m r^{2}$, so $f r=m$ $r^{2} \alpha$, with $r \alpha=a$.
- Divide out r, $\mathrm{f}=\mathrm{m}$ a.

Vehicle dynamics

- Move up (or down) hill, adding potential energy mg h .
- Force is in the direction of motion, $\mathrm{mg} \sin \theta$.
$\sin \theta$ rise/run \rightarrow slope
Vehicles: defined as rise/horizontal distance $\rightarrow \tan \theta$ $\mathrm{g}=9.807 \mathrm{~m} / \mathrm{s}^{2}$, call it 10 .

Forces

- A practical vehicle has both rotational and linear motion (we spin the tires and use them to translate to linear motion).

Aerodynamic drag

- Move air out of the way (drag force).
- We must inject enough kinetic energy into the displaced mass of air to move it away as fast as the car moves through.

Drag

- Bigger, less streamlined: more air, more drag, more change in the motion of the air.

Drag

- Smaller, more like a wing: less air, less drag, less change in the motion of the air.
- Drag force:

$$
f_{\text {drag }}=\frac{1}{2} C_{d} A_{f} \rho v^{2}
$$

- C_{d} drag coefficient
- A_{f} frontal area
- ρ mass density of air
- v vehicle speed

Typical drag coefficients (various sources)

Vehicle	C_{d}
Typical truck	0.6 or more
Jeep Wrangler	0.45
Cadillac Escalade	0.37
Porsche Boxster	0.29
Ford Fusion	0.27
Tesla model 3	0.23
GM EV1	0.19

GM Precept concept car, $\mathrm{C}_{\mathrm{d}} 0.16$
Source: www.edmunds.com
Below 0.20 , we are usually beyond the realm of production cars.
Formula 1 and Indy cars tend to have $C_{d} \approx 1$, seeking to convert drag into downforce.

Area, air density

- Frontal area is often measured from a careful front photograph. Older list at http://ecomodder.com/wiki/Vehicle Coefficient of Drag List
- Sometimes available from manufacturers.
- Air density falls off nearly linearly above sea level.
- Start with about $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ (dropping to about $1.08 \mathrm{~kg} / \mathrm{m}^{3}$ at an elevation of 1000 m).
- Unless you are high in the mountains, the effect is small.

Tire force

- A tire flexes as the vehicle moves along.
- Flexing is not fully reversible, so it consumes energy and heats up the tire.
- Also, we need the tire to be in contact with pavement to provide force against the roadway and move the vehicle.

Driver61
Youtube channel

Tire force

- This means a certain energy is consumed in each tire during each revolution - energy per unit distance.
- Amount of flex increases with vehicle weight, increases with contact patch size.
- Decreases with pressure.

www.tirerack.com

Tire force

- Energy per unit distance?
- Energy or work is force integrated over a distance,

$$
W=\int f d x
$$

- This means that energy consumed per unit distance is the same as the force required to move something over that distance.

Tire diameter has limited effect: flex loss is about pavement contact and contact patch.

Tire force

- For our purposes, let's assume tire friction coefficients are high enough to stay "attached" to the road.
- If the tires just spin, no good. For vehicle motion,

$$
f_{\text {tire }}=m g R_{t}
$$

- Here m is the vehicle mass, g is gravity acceleration, R_{t} is the coefficient of rolling resistance.
- Typical value (cars) is about 0.01. Typical low loss tires 0.008.
- High-pressure racing bike tires perhaps 0.004.
- Steel train wheels 0.0004 .

So far? Drive force needed at the tire edge:

- Need to add some force to accelerate the vehicle!
- One detail that might not be small: to accelerate a vehicle, we must provide both linear acceleration and angular acceleration to the wheels and other rotating parts.
- The extra moment of inertia is ~ mr^{2}
- This means the rotating parts count twice for acceleration.
- For acceleration, there is an equivalent mass given by the total vehicle mass plus the mass (again) of rotating parts.

That extra angular momentum

- Since rotating mass is double-counted for vehicle acceleration, this works strongly against in-wheel motors and hardware.
- Extra mass of rotating parts also gives a gyroscopic effect - tends to oppose changes in direction.
- Sometimes called "unsprung mass" since it attaches to wheels or axles rather than suspensions or springs.

What else?

- "Hotel" loads: lights, heat, cooling, fans, electronics, sound system, ...
- System: controls, sensors, coolant pumps, fuel pumps.
- Energy per unit time, rather than linked to distance.
- Friction?

Friction

Fraction matters when moving parts slide against stationary parts.
Bearings: Energy loss is approximately proportional to speed.

www.machinerylubrication.com

Tire friction - A much different issue

- Tires should attach to the road to transfer axle torque into linear driving force.
- For transportation, the friction force between tires and road is not linked to loss.
- It is a limit on force to be delivered.

Normal force

Possible friction force

$m g \times f_{c}$

Tire friction

- Tire friction is the only force that can hold a parked car on a hill.

For level motion, if the drive force exceeds the friction force, tires will slide rather than propel the vehicle.

Maximum force available against sliding:
$\mathrm{mg} \times($ friction coefficient)

Tire: acceleration limit friction

- Vehicle acceleration force is $\mathrm{m} \times \mathrm{a}$.
- Maximum tire friction force is $\mathrm{mgf}_{\mathrm{c}}$.
- Notice that $\mathrm{a}<\mathrm{gf}_{\mathrm{c}}$ to avoid sliding.

- Does it matter? $60 \mathrm{mph} \rightarrow 26.8 \mathrm{~m} / \mathrm{s}$.
- 0 to 60 mph in 3 s requires $\mathrm{a}=8.94 \mathrm{~m} / \mathrm{s}^{2}, 0.9 \mathrm{~g}!$!

Traction Power - DELVERED TO THE AXLE

- Power is the rate at which work is done.
- For our vehicle, energy $=$ force \times distance (really $W=\int f d x$ but take the force outside the integral if independent of x).
- Force \times distance/time \rightarrow force \times speed.
- Power $=f \times v$,

Power and force: Things to notice

- Most terms depend on mass. Lower mass \rightarrow lower power
- Aerodynamic power increases as the cube of the speed.
- Example: Takes 50% more power to drive at 80 mph than at 70 mph .

Power and force: Things to notice

- How do terms stack up, typical ~2000 kg car, low-loss tires?
- Samples: $\mathrm{mg}=20000 \mathrm{~N}, \mathrm{Cd}=0.27, \mathrm{Af}=2.4 \mathrm{~m}^{2}, 2 \%$ slope.
- $m g \sin \theta \rightarrow 400 \mathrm{~N}$
- $\mathrm{mgR}_{\mathrm{t}} \rightarrow 160 \mathrm{~N}$
- $1_{2} \mathrm{C}_{\mathrm{d}} \mathrm{A}_{\mathrm{f}} \rho \mathrm{v}^{2} \rightarrow 0.39 \mathrm{v}^{2} \mathrm{~N}$
- It takes 600 N of force at $10 \mathrm{~m} / \mathrm{s}$ (22 mph) on a 2% slope, 720 N at $20 \mathrm{~m} / \mathrm{s}, \ldots$
- 720 N at $20 \mathrm{~m} / \mathrm{s}$ is 14.4 kW .

For slopes up to $10 \%, \sin \theta \approx \tan \theta$

Traction power

- So far, this seems to apply to any vehicle.
- What is different if the vehicle is electric?
- Traction power can be nearly all of the needed power. This is not the case for fuel-driven vehicles.
- Batteries will tend to make the vehicle heavier (more about this soon).
- Much less waste heat, more hotel power for cabin heat.
- Fewer moving parts, less friction loss.
- Electricity is an indirect energy source. How was it generated?
- Braking (more shortly).

Energy

- Consumption:A good electric car uses less than 250 W-h per mile (with minimal hotel loads).
- Kinetic energy: 2000 kg car at $30 \mathrm{~m} / \mathrm{s}$ has $1 / 2 \mathrm{mv}^{2}=900 \mathrm{~kJ}$.

Is that a lot? It could run a 10 W lamp for one day.
It is 0.25 kWh , a few cents worth.

Braking

$$
f_{\text {traction }}=m g \sin \theta+m g R_{t}+\frac{1}{2} \rho C_{d} A_{f} v^{2}+m_{e q} a+f_{\text {brake }}
$$

- Brakes remove vehicle kinetic energy to slow or stop.
- For the typical car, we are trying to remove a few megajoules of kinetic energy in a few seconds.
- Power levels: $1 \mathrm{MJ} / \mathrm{s}=1 \mathrm{MW}$.
- Disc and drum brakes do this with friction.
- Energy is converted to heat and lost.
- This can get extreme (see Ford vs. Ferrari).
- The expression shows brakes working against traction force.

Braking

$$
m_{e q} a=-f_{\text {brake }}-m g \sin \theta-m g R_{t}-\frac{1}{2} \rho C_{d} A_{f} v^{2}
$$

- Rewrite in term of acceleration. Seeking to make $a<0$.
- We can slow by coasting down ($f_{\text {brake }}=0$), let drag and tire resistance take the energy.
- Or backfeed into the drivetrain, let engine friction and rotating part friction (not shown) take some of the energy loss.
- If we are going downhill, sin Us negative and works against brakes.

Regenerative braking

- In an electric drive train, the motor can deliver either positive torque or negative torque.
- Cannot do this with a fueled engine (except friction).
- We can enforce $f_{\text {traction }}<0$ independent of friction brakes.
- Negative torque \rightarrow negative power \rightarrow energy recovered back from motion.
- This energy can be converted to heat (and loss) or returned to the source (storage).
- Diesel-electric trains use electric motors. Braking energy is sent to large air-cooled resistor banks.
- Also called energy recovery braking.

Regenerative braking

$$
f_{\text {traction }}=m g \sin \theta+m g R_{t}+\frac{1}{2} \rho C_{d} A_{f} v^{2}+m_{e q} a+f_{\text {brake }}
$$

- In an electric vehicle, there is no problem to control acceleration a to a negative number - up to the tire friction limits.
- The same method can recover energy when going downhill.

$$
P_{\text {drive }}=m g v \sin \theta+m g R_{t} v+\frac{1}{2} \rho C_{d} A_{f} v^{3}+m_{e q} a v+P_{\text {hotel }}+P_{\text {cont }}+\cdots
$$

Caveats

- We have been examining traction power, the power needed into the drive axle to move a vehicle.
- In a fuel-driven car, the fraction of fuel energy that reaches the axle is low (10% to 20% is typical).
- In a motor-driven electric car, often 90% of stored battery energy can drive the axle.
- There is loss during battery charging, and so on.

Key Issue - Energy Storage

- A vehicle must carry along its own energy.
- It must be stored in a useful way that is easy to reverse.
- Exceptions:
- Trains, busses, trollies with overhead catenaries.
- Electrified rails (common for subways).
- Wireless power transfer (still early).

Travelchinaguide.com

Efficiencies

- Efficiency of drive train - electric power input to mechanical power at axle.
- Battery cycle (in/out) efficiency - charger power input to inverter power output
- Charger efficiency - grid power input to battery storage output
- Efficiency of the electric power grid

Energy storage

- A vehicle needs to store energy (for range).
- Alternatives:
- Electrical storage: Capacitors or inductors
- Mechanical storage: Flywheels or springs Pv-magazine-usa.com
- Compressed air tanks
- Gravity potential energy mgh
- Electrochemical batteries
- Chemical storage: Fuel
- Figures of merit:
- Useful storage per unit mass

- Useful energy rate (power) per unit mass

Specific Energy Density (J/kg)

Storage techriology Energyidensity Commenis
 Lead-acid batteries $100 \mathrm{~kJ} / \mathrm{kg}(30-\mathrm{W}$-g) h / kg)
 Lithium-ion batteries* $1000 \mathrm{~kJ} / \mathrm{kg}$
 High efficiency
 $\begin{array}{ll}\text { Compressed air, } & 80 \mathrm{~kJ} / \mathrm{kg} \\ \text { t0MPaonal capacitors } & 0.2 \mathrm{~kJ} / \mathrm{kg}\end{array}$
 Conventional
 $0.2 \mathrm{~kJ} / \mathrm{kg}$ capacitors
 Uliracapacacitors
 Flywitieets
 $20 \mathrm{~kJ} / \mathrm{kg}$

 Gasoline
 $46400 \mathrm{~kJ} / \mathrm{kg}$
 12900 W-h/kg

Compare to gravity potential energy

- Potential energy mgh. Raise a mass, and then recover energy as it is lowered.
- With $\mathrm{g} \approx 10$, a 1 kg mass stores $10 \mathrm{~N}-\mathrm{m}$ per 1 m rise.
- For a 100 m rise, this would be $1 \mathrm{~kJ} / \mathrm{kg}$.
- Put a different way, a lead-acid battery stores enough energy to raise itself 10000 m .
- Storage methods have different scales.
- Pumped hydro storage: Move millions of tonnes of water up ~100 m.
- Compressed air: Need a big enough tank to make tank mass small.
- Capacitors: Can be as small as needed.
- Hydrogen: Very light, so how to carry enough mass for value?

Some perspectives

- Nobody likes batteries, but so far they are the only viable alternative to liquid (or gaseous) fuel.
- A combustion process can only extract a fraction of the energy in a chemical fuel.
- Lead-acid battery energy density is about 1% of the usable energy in gasoline, and lithium-ion batteries will get to 10%.
- Sample test car: 275 kg battery pack \rightarrow equivalent to 4 L of gas!

37

Energy needs

- The batteries will need to weigh a lot more than liquid fuel to provide useful range.
- We can talk about what constitutes "useful range," but it would not necessarily match 1:1 against a fuel vehicle.
- Long uphill drives add a lot of energy need.
- Towing a trailer will increase drag and mass.

Rate and power needs

- Rate is a problem.
- Example: refill a gas tank with 15 gal in 5 min.
- The energy rate is that of a huge office building (6.7 MW).
- It is costly and problematic to fill batteries quickly.

Electric Charger Levels

- Level 1 - convenience outlet, 0 to 3.8 kW (typical 1.4 kW).
- Level 2 - dedicated charge point, 4 to 17 kW (typical 6 kW).
- Level 3 - fast charging, 25 kW and up (typical 50 kW).
- Some are direct dc chargers.
- Special charge points, not usual at homes or small businesses.

Electric Charger Levels

- Tesla Motors introduced the idea of thinking of these in terms of "miles per hour" (of useful charge).
- Level 1 - about 6 to 10 mph .
- Level 2 - about 25 to 60 mph .
- Level 3 - up to 500 mph .

41

Charge times

- This can result in a lot of confusion.
- Passenger cars are parked more than 80% of the time.
- You don't park connected to a gas pump, but you can park connected to an electric outlet.
- 8 pm to 6 am: 10 hrs
- Level 1 - 60 to 100 miles.
- Level 2 - 250 to 600 miles.
- Level 3 - not for overnight connection.
- I will not have this time in a long-distance trip, but likely for daily driving.

Incentive for long-term outlet connection

- Electricity is usually much cheaper at night than during the day. Likely $4 x$ difference.
- If a vehicle can be programmed or controlled, it can choose to charge for the cheapest energy.

- Or sell timing flexibility back to the grid for a discount.

What does this mean?

- "It takes a long time to charge an electric vehicle."
- It takes a long connection time, but this is not the same as driver time.
- Rate matters in at least three major situations:

1. Vehicles that park only a limited portion of time (trucking, taxi service, public transport, delivery, ...).
2. When I want to take a long trip.
3. When I have no access to an outlet.

Retail real-time price, one month, Spring 2007

A quick economic check

- Take gasoline at $\$ 3.60 /$ gallon, and a car that achieves 30 miles/gallon.
- Energy cost is $\$ 0.12 / \mathrm{mile}$, and usage is about $1240 \mathrm{~Wh} / \mathrm{mi}$.
- Now take electricity at $\$ 0.12 / \mathrm{kW}$-h, and a car that consumes $250 \mathrm{~W}-\mathrm{h} / \mathrm{mile}$.
- Energy cost is $\$ 0.03 /$ mile.
- Much cheaper with night charging.

This plug-in hybrid gives a choice.

Some points

- At a night rate of $\$ 0.04 / \mathrm{kW}-\mathrm{h}$, cost becomes $\$ 0.01 / \mathrm{mile}$.
- Substantial incentive for the customer.
- But even at full retail electricity price, the energy is much cheaper than gasoline.
- Still the issue of range and long-range driving.

Examples

- 2020 Nissan Leaf with 40 kWh battery pack.
- Data from the manufacturer, www.nissannews.com
- 6.6 kW charger on board - direct plug into 120 V or 240 V outlet.
- Drag and frontal area can be hard to find. Car and Driver reported $24.5 \mathrm{ft}^{2}\left(2.28 \mathrm{~m}^{2}\right)$ for the 2012 leaf in the June 6, 2014 issue. Nissan reports Cd = 0.28 for the 2020 model.
- Unloaded weight is 3540 lb (1606 kg), and fully loaded gross weight rating is $4750 \mathrm{lb}(2156 \mathrm{~kg})$.
- Let's load it to 1800 kg and see what it needs!

Examples

- By the way, a more recent Car and Driver issue tells us the car can do 0 to 60 mph in 6.8 s .
- $60 \mathrm{mph} \rightarrow 26.8 \mathrm{~m} / \mathrm{s}$.
- $26.8 \mathrm{~m} / \mathrm{s}$ in 6.8 s is $3.94 \mathrm{~m} / \mathrm{s}^{2}$, or 0.4 g .
- The same test showed that the car could pull 0.76 g in a tight turn before sliding. This gives us the tire friction coefficient, but only on their test pavement.

Examples

- 70 mph cruise, flat: Traction force 516 N, power 16.1 kW.
- 100 mph , flat: Traction force 905 N , power 40.5 kW .
- 0.3 g acceleration, flat, 30 mph : Force 5850 N , power 78.5 kW .
- 0.4 g acceleration, flat, 60 mph : Force 7936 N, power 213 kW .
- Nissan reports a motor rating of 110 kW .
- 35 mph cruise, flat: $235 \mathrm{~N}, 3.67 \mathrm{~kW}$.
- 5% grade at $72 \mathrm{mph}: 1420 \mathrm{~N}, 45.7 \mathrm{~kW}$.

Examples

- What energy?
- 70 mph cruise, 90% drivetrain efficiency, plus 1 kW hotel load, for example:
- $16.1 \mathrm{~kW} / 0.9+1 \mathrm{~kW}=18.9 \mathrm{~kW}$ input, so $18.9 \mathrm{kWh} / \mathrm{h}$, equal to $270 \mathrm{~Wh} / \mathrm{mile}$.
- Range based on using 80\% of storage is 119 miles.
- "EPA range" is 149 miles, but this is for a combined city and highway test, not cruise at speed.
- 75 mph cruise, 19.1 kW traction, 22.3 kW input, $297 \mathrm{~Wh} / m i l e$.
- Range based on using 80% of storage is 108 miles.
- 45 mph cruise, $170 \mathrm{~Wh} / \mathrm{mile}$, 189 miles of range.

Examples

- Move up a 30\% grade: 5440 N (at zero speed)
- From experience, power to provide $2.5 \mathrm{~m} / \mathrm{s}^{2}$ at mph should be representative of top end power needs.
- Here that gives 112 kW (same as motor rated power!).
- Maximum speed, flat, 110 kW : 143.5 mph .
- This defines "top speed" for a vehicle - continuous rating, maximum speed.
- Look like this vehicle runs at 200% rated power for a few seconds to achieve its 6.8 s time.

Traction power for platform

Examples

Examples

- Typical Class 8 tractor-trailer with cab fairing
- Data from NASAAmes and others.
- Frontal area $9.89 \mathrm{~m}^{2}, \mathrm{Cd} 0.60$, tire resistance 0.007 .
- Load to 60000 lb .

Examples

- 70 mph cruise, flat: Traction force 5356 N, power 168 kW.
- 100 mph , flat: Power 402 kW .
- 0.3 g acceleration, flat, 30 mph : Force 86.3 kN , power 1.16 MW.
- 0.1 g acceleration, flat, 60 mph : Force 32.4 kN , power 868 kW .
- 5% grade at $72 \mathrm{mph}: 18.9 \mathrm{kN}, 608 \mathrm{~kW}$.

Examples

- What energy?
- 70 mph cruise, 90% drivetrain efficiency, plus 1 kW hotel load, for example:
- $168 \mathrm{~kW} / 0.9$ + $1 \mathrm{~kW}=187 \mathrm{~kW}$ input, so $18.9 \mathrm{kWh} / \mathrm{h}$, equal to $2675 \mathrm{~Wh} / \mathrm{mile}$.
- 75 mph cruise, 197 kW traction, 220 kW input, 2930 Wh/mile.
- About 10x compared to passenger car.
- Implies 10x for storage needs!

Examples

Energy

- Could we store 700 kWh on board a truck?
- Diesel at $45000 \mathrm{~kJ} / \mathrm{kg}$. If we convert 30% of it, a truck can easily store 300 kg of fuel and has about 4 GJ , or 1125 kWh of useful energy stored up.
- For Li-ion batteries, at a (future) $1000 \mathrm{~kJ} / \mathrm{kg}, 700 \mathrm{kWh}$ is 2.52 GJ , requiring 2520 kg of batteries (5500 lb).
- This is not impossible (about 10\% of the loaded mass), but it is a future development.

Baseline Architecture

- Generic architecture for a "series" hybrid electric vehicle.
- This means the energy comes together at an electrical bus. drive shaft

Baseline Architecture

- Example: Diesel-electric train. Same (with ac motors) but no batteries.

Battery

Baseline architecture

- Typical for plug-in hybrid.
drive sha
Battery
stack

Engine

Battery electric vehicle

- Pure EV, larger battery, typically an on-board charger. drive shaf
Battery stack

