
P. T. Krein
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Vehicle Basic Dynamics: Energy and Power Needs of Electric Vehicles

P. T. Krein

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, USA
Must do work against external forces to move

- Main power needs:
 - Aerodynamic drag
 - Tire loss
 - Gravity
 - Acceleration

- Others:
 - “Hotel” loads
 - Controls
 - Overhead

![Graph showing Traction power for platform vs Speed (mph)]
Vehicle dynamics

- The governing needs come from basic physics, \(f = ma \) (force, mass, acceleration).
- There are also rotating components, for which \(T = J\alpha \) (torque, moment of inertia, angular acceleration).
- Rotation follows, write it out: \(T = f r, J = mr^2 \), so \(f r = m r^2 \alpha \), with \(r \alpha = a \).
- Divide out \(r \), \(f = ma \).
Vehicle dynamics

- Move up (or down) hill, adding potential energy $m g h$.
- Force is in the direction of motion, $m g \sin \theta$.

$\sin \theta \rightarrow \text{rise/run} \rightarrow \text{slope}$

Vehicles: defined as rise/horizontal distance $\rightarrow \tan \theta$

$g = 9.807 \text{ m/s}^2$, call it 10.
Forces

- A practical vehicle has both rotational and linear motion (we spin the tires and use them to translate to linear motion).
Aerodynamic drag

• Move air out of the way (*drag* force).
• We must inject enough kinetic energy into the displaced mass of air to move it away as fast as the car moves through.
Drag

- Bigger, less streamlined: more air, more drag, more change in the motion of the air.
Drag

• Smaller, more like a wing: less air, less drag, less change in the motion of the air.

• Drag force:
 \[f_{\text{drag}} = \frac{1}{2} C_d A_f \rho v^2 \]

 - \(C_d \) drag coefficient
 - \(A_f \) frontal area
 - \(\rho \) mass density of air
 - \(v \) vehicle speed
Typical drag coefficients (various sources)

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>C_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical truck</td>
<td>0.6 or more</td>
</tr>
<tr>
<td>Jeep Wrangler</td>
<td>0.45</td>
</tr>
<tr>
<td>Cadillac Escalade</td>
<td>0.37</td>
</tr>
<tr>
<td>Porsche Boxster</td>
<td>0.29</td>
</tr>
<tr>
<td>Ford Fusion</td>
<td>0.27</td>
</tr>
<tr>
<td>Tesla model 3</td>
<td>0.23</td>
</tr>
<tr>
<td>GM EV1</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Below 0.20, we are usually beyond the realm of production cars. Formula 1 and Indy cars tend to have $C_d \approx 1$, seeking to convert drag into downforce.

GM Precept concept car, C_d 0.16

Source: www.edmunds.com
Area, air density

- Sometimes available from manufacturers.
- Air density falls off nearly linearly above sea level.
- Start with about 1.2 kg/m3 (dropping to about 1.08 kg/m3 at an elevation of 1000 m).
- Unless you are high in the mountains, the effect is small.
Tire force

• A tire flexes as the vehicle moves along.
• Flexing is not fully reversible, so it consumes energy and heats up the tire.
• Also, we need the tire to be in contact with pavement to provide force against the roadway and move the vehicle.
Tire force

- This means a certain energy is consumed in each tire during each revolution – energy per unit distance.
- Amount of flex increases with vehicle weight, increases with *contact patch* size.
- Decreases with pressure.

www.tirerack.com
Tire force

• Energy per unit distance?
• Energy or work is force integrated over a distance,

\[W = \int f \, dx \]

• This means that energy consumed per unit distance is the same as the force required to move something over that distance.

Tire diameter has limited effect: flex loss is about pavement contact and contact patch.
Tire force

- For our purposes, let’s assume tire friction coefficients are high enough to stay “attached” to the road.
- If the tires just spin, no good. For vehicle motion,

\[f_{tire} = mgR_t \]

- Here \(m \) is the vehicle mass, \(g \) is gravity acceleration, \(R_t \) is the coefficient of rolling resistance.
- Typical value (cars) is about 0.01. Typical low loss tires 0.008.
- High-pressure racing bike tires perhaps 0.004.
- Steel train wheels 0.0004.
So far? Drive force needed at the tire edge:

- Need to add some force to accelerate the vehicle!

- One detail that might not be small: to accelerate a vehicle, we must provide both linear acceleration and angular acceleration to the wheels and other rotating parts.

- The extra moment of inertia is $\sim mr^2$

- This means the rotating parts count *twice* for acceleration.

- For acceleration, there is an *equivalent mass* given by the total vehicle mass *plus* the mass (again) of rotating parts.
That extra angular momentum

- Since rotating mass is double-counted for vehicle acceleration, this works strongly against in-wheel motors and hardware.
- Extra mass of rotating parts also gives a gyroscopic effect – tends to oppose changes in direction.
- Sometimes called “unsprung mass” since it attaches to wheels or axles rather than suspensions or springs.
What else?

• “Hotel” loads: lights, heat, cooling, fans, electronics, sound system, …

• System: controls, sensors, coolant pumps, fuel pumps.

• Energy per unit time, rather than linked to distance.

• Friction?

motor1.com
Friction

Fraction matters when moving parts slide against stationary parts.

Bearings: Energy loss is approximately proportional to speed.

www.machinerylubrication.com
Tire friction – A much different issue

- Tires should attach to the road to transfer axle torque into linear driving force.
- For transportation, the friction force between tires and road is not linked to loss.
- It is a limit on force to be delivered.

![Diagram showing normal force and possible friction force](image)

\[
mg \times f_c
\]
Tire friction

- Tire friction is the only force that can hold a parked car on a hill.

For level motion, if the drive force exceeds the friction force, tires will slide rather than propel the vehicle.

Maximum force available against sliding:
\[mg \times (\text{friction coefficient}) \]
Tire: acceleration limit friction

- Vehicle acceleration force is $m \times a$.
- Maximum tire friction force is mgf_c.
- Notice that $a < gf_c$ to avoid sliding.

We usually want f_c to be as high as possible for tires.

Not entirely a choice: driving on ice, …

- Does it matter? 60 mph \rightarrow 26.8 m/s.
- 0 to 60 mph in 3 s requires $a = 8.94 \text{ m/s}^2$, 0.9g!!
Traction Power – DELIVERED TO THE AXLE

- Power is the rate at which work is done.
- For our vehicle, energy = force × distance (really \(W = \int f \, dx \) but take the force outside the integral if independent of \(x \)).
- Force × distance/time → force × speed.
- Power = \(f \times v \),
Power and force: Things to notice

- Most terms depend on mass. Lower mass → lower power
- Aerodynamic power increases as the cube of the speed.
 - Example: Takes 50% more power to drive at 80 mph than at 70 mph.
Power and force: Things to notice

- How do terms stack up, typical ~2000 kg car, low-loss tires?
- Samples: mg = 20000 N, Cd = 0.27, Af=2.4 m², 2% slope.
- mg sin θ → 400 N
- mgR_t → 160 N
- \(\frac{1}{2}C_d A_f \rho v^2 \) → 0.39 v² N
- It takes 600 N of force at 10 m/s (22 mph) on a 2% slope, 720 N at 20 m/s, …
- 720 N at 20 m/s is 14.4 kW.

For slopes up to 10%, sin θ ≈ tan θ
Traction power

• So far, this seems to apply to any vehicle.
• What is different if the vehicle is electric?
 • Traction power can be nearly all of the needed power. This is not the case for fuel-driven vehicles.
 • Batteries will tend to make the vehicle heavier (more about this soon).
 • Much less waste heat, more hotel power for cabin heat.
 • Fewer moving parts, less friction loss.
 • Electricity is an indirect energy source. How was it generated?
 • Braking (more shortly).
Energy

- Consumption: A good electric car uses less than 250 W-h per mile (with minimal hotel loads).
- Kinetic energy: 2000 kg car at 30 m/s has $\frac{1}{2} mv^2 = 900$ kJ.

Is that a lot? It could run a 10 W lamp for one day. It is 0.25 kWh, a few cents worth.
Braking

\[f_{\text{traction}} = mg \sin \theta + mgR_t + \frac{1}{2} \rho C_d A_f v^2 + m_{eq} a + f_{\text{brake}} \]

- Brakes remove vehicle kinetic energy to slow or stop.
- For the typical car, we are trying to remove a few megajoules of kinetic energy in a few seconds.
- Power levels: 1 MJ/s = 1 MW.
- Disc and drum brakes do this with friction.
 - Energy is converted to heat and lost.
 - This can get extreme (see *Ford vs. Ferrari*).
- The expression shows brakes working against traction force.
Braking

\[m_{eq} a = -f_{brake} - mg \sin \theta - mg R_t - \frac{1}{2} \rho C_d A_f v^2 \]

- Rewrite in term of acceleration. Seeking to make \(a < 0 \).
- We can slow by coasting down \((f_{brake} = 0) \), let drag and tire resistance take the energy.
- Or backfeed into the drivetrain, let engine friction and rotating part friction (not shown) take some of the energy loss.
- If we are going downhill, \(\sin \theta \) is negative and works against brakes.
Regenerative braking

- In an electric drive train, the motor can deliver either positive torque or negative torque.
- Cannot do this with a fueled engine (except friction).
- We can enforce $f_{\text{traction}} < 0$ independent of friction brakes.
- Negative torque \rightarrow negative power \rightarrow energy recovered back from motion.
- This energy can be converted to heat (and loss) or returned to the source (storage).
- Diesel-electric trains use electric motors. Braking energy is sent to large air-cooled resistor banks.
- Also called *energy recovery braking*.
Regenerative braking

\[
f_{\text{traction}} = mg \sin \theta + mgR_t + \frac{1}{2} \rho C_d A_f v^2 + m_{eq} a + f_{\text{brake}}
\]

- In an electric vehicle, there is no problem to control acceleration \(a \) to a negative number – up to the tire friction limits.
- The same method can recover energy when going downhill.

\[
P_{\text{drive}} = mgv \sin \theta + mgR_tv + \frac{1}{2} \rho C_d A_f v^3 + m_{eq} av + P_{\text{hotel}} + P_{\text{cont}} + \cdots
\]
Caveats

- We have been examining *traction power*, the power needed into the drive axle to move a vehicle.
- In a fuel-driven car, the fraction of fuel energy that reaches the axle is low (10% to 20% is typical).
- In a motor-driven electric car, often 90% of stored battery energy can drive the axle.
- There is loss during battery charging, and so on.
Key Issue – Energy Storage

• A vehicle must carry along its own energy.
• It must be stored in a useful way that is easy to reverse.
• Exceptions:
 • Trains, busses, trollies with overhead catenaries.
 • Electrified rails (common for subways).
 • Wireless power transfer (still early).
Efficiencies

- Efficiency of drive train – electric power input to mechanical power at axle.
- Battery cycle (in/out) efficiency – charger power input to inverter power output
- Charger efficiency – grid power input to battery storage output
- Efficiency of the electric power grid
Energy storage

- A vehicle needs to store energy (for range).

Alternatives:
 - Electrical storage: Capacitors or inductors
 - Mechanical storage: Flywheels or springs
 - Compressed air tanks
 - Gravity potential energy mgh
 - Electrochemical batteries
 - Chemical storage: Fuel

Figures of merit:
 - Useful storage per unit mass
 - Useful energy rate (power) per unit mass

Pv-magazine-usa.com
<table>
<thead>
<tr>
<th>Storage Technology</th>
<th>Energy Density</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead-acid batteries</td>
<td>100 kJ/kg (30 W-h/kg)</td>
<td></td>
</tr>
<tr>
<td>Lithium-ion batteries*</td>
<td>1000 kJ/kg</td>
<td>High efficiency</td>
</tr>
<tr>
<td>Compressed air, 10MPa</td>
<td>80 kJ/kg</td>
<td>Plus air tank</td>
</tr>
<tr>
<td>Conventional capacitors</td>
<td>0.2 kJ/kg</td>
<td></td>
</tr>
<tr>
<td>Ultracapacitors</td>
<td>20 kJ/kg</td>
<td></td>
</tr>
<tr>
<td>Flywheels</td>
<td>100 kJ/kg</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>46400 kJ/kg</td>
<td>129000 W-h/kg</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>142000 kJ/kg</td>
<td></td>
</tr>
</tbody>
</table>

*Prototypes. Production units ~600 kJ/kg.
Compare to gravity potential energy

- Potential energy mgh. Raise a mass, and then recover energy as it is lowered.
- With $g \approx 10$, a 1 kg mass stores 10 N-m per 1 m rise.
- For a 100 m rise, this would be 1 kJ/kg.
- Put a different way, a lead-acid battery stores enough energy to raise itself 10000 m.
- Storage methods have different scales.
 - Pumped hydro storage: Move millions of tonnes of water up ~100 m.
 - Compressed air: Need a big enough tank to make tank mass small.
 - Capacitors: Can be as small as needed.
 - Hydrogen: Very light, so how to carry enough mass for value?
Some perspectives

- Nobody likes batteries, but so far they are the only viable alternative to liquid (or gaseous) fuel.
- A combustion process can only extract a fraction of the energy in a chemical fuel.
- Lead-acid battery energy density is about 1% of the usable energy in gasoline, and lithium-ion batteries will get to 10%.
- Sample test car: 275 kg battery pack → equivalent to 4 L of gas!
Energy needs

- The batteries will need to weigh a lot more than liquid fuel to provide useful range.
- We can talk about what constitutes “useful range,” but it would not necessarily match 1:1 against a fuel vehicle.
- Long uphill drives add a lot of energy need.
- Towing a trailer will increase drag and mass.
Rate and power needs

- Rate is a problem.
- Example: refill a gas tank with 15 gal in 5 min.
- The energy rate is that of a huge office building (6.7 MW).
- It is costly and problematic to fill batteries quickly.
Electric Charger Levels

- **Level 1** – convenience outlet, 0 to 3.8 kW (typical 1.4 kW).
- **Level 2** – dedicated charge point, 4 to 17 kW (typical 6 kW).
- **Level 3** – fast charging, 25 kW and up (typical 50 kW).
 - Some are direct dc chargers.
 - Special charge points, not usual at homes or small businesses.
Electric Charger Levels

- Tesla Motors introduced the idea of thinking of these in terms of “miles per hour” (of useful charge).
- Level 1 – about 6 to 10 mph.
- Level 2 – about 25 to 60 mph.
- Level 3 – up to 500 mph.
Charge times

- This can result in a lot of confusion.
- Passenger cars are parked more than 80% of the time.
- You don’t park connected to a gas pump, but you *can* park connected to an electric outlet.
- 8 pm to 6 am: 10 hrs
 - Level 1 – 60 to 100 miles.
 - Level 2 – 250 to 600 miles.
 - Level 3 – not for overnight connection.
- I will not have this time in a long-distance trip, but likely for daily driving.
Incentive for long-term outlet connection

- Electricity is usually much cheaper at night than during the day. Likely 4x difference.
- If a vehicle can be programmed or controlled, it can choose to charge for the cheapest energy.
- Or sell timing flexibility back to the grid for a discount.
What does this mean?

- “It takes a long time to charge an electric vehicle.”
 - It takes a long connection time, but this is not the same as driver time.
- Rate matters in at least three major situations:
 1. Vehicles that park only a limited portion of time (trucking, taxi service, public transport, delivery, …).
 2. When I want to take a long trip.
 3. When I have no access to an outlet.
A quick economic check

- Take gasoline at $3.60/gallon, and a car that achieves 30 miles/gallon.
- Energy cost is $0.12/mile, and usage is about 1240 Wh/mi.
- Now take electricity at $0.12/kW-h, and a car that consumes 250 W-h/mile.
- Energy cost is $0.03/mile.
- Much cheaper with night charging.

This plug-in hybrid gives a choice.
Some points

- At a night rate of $0.04/kW-h, cost becomes $0.01/mile.
- Substantial incentive for the customer.
- But even at full retail electricity price, the energy is much cheaper than gasoline.
- Still the issue of range and long-range driving.
Examples

- 2020 Nissan Leaf with 40 kWh battery pack.
- Data from the manufacturer, www.nissannews.com
- 6.6 kW charger on board – direct plug into 120 V or 240 V outlet.
- Drag and frontal area can be hard to find. Car and Driver reported 24.5 ft² (2.28 m²) for the 2012 leaf in the June 6, 2014 issue. Nissan reports Cd = 0.28 for the 2020 model.
- Unloaded weight is 3540 lb (1606 kg), and fully loaded gross weight rating is 4750 lb (2156 kg).
- Let’s load it to 1800 kg and see what it needs!
Examples

- By the way, a more recent *Car and Driver* issue tells us the car can do 0 to 60 mph in 6.8 s.
- $60 \text{ mph} \rightarrow 26.8 \text{ m/s}$.
- 26.8 m/s in 6.8 s is 3.94 m/s^2, or 0.4g.
- The same test showed that the car could pull 0.76g in a tight turn before sliding. This gives us the tire friction coefficient, but only on their test pavement.
Examples

- 70 mph cruise, flat: Traction force 516 N, power 16.1 kW.
- 100 mph, flat: Traction force 905 N, power 40.5 kW.
- 0.3g acceleration, flat, 30 mph: Force 5850 N, power 78.5 kW.
- 0.4 g acceleration, flat, 60 mph: Force 7936 N, power 213 kW.
- Nissan reports a motor rating of 110 kW.
- 35 mph cruise, flat: 235 N, 3.67 kW.
- 5% grade at 72 mph: 1420 N, 45.7 kW.
Examples

- What energy?
- 70 mph cruise, 90% drivetrain efficiency, plus 1 kW hotel load, for example:
 \[16.1 \text{ kW}/0.9 + 1 \text{ kW} = 18.9 \text{ kW} \text{ input, so } 18.9 \text{ kWh/h, equal to } 270 \text{ Wh/mile.} \]
- Range based on using 80% of storage is 119 miles.
- “EPA range” is 149 miles, but this is for a combined city and highway test, not cruise at speed.
- 75 mph cruise, 19.1 kW traction, 22.3 kW input, 297 Wh/mile.
- Range based on using 80% of storage is 108 miles.
- 45 mph cruise, 170 Wh/mile, 189 miles of range.
Examples

- Move up a 30% grade: 5440 N (at zero speed)
- From experience, power to provide 2.5 m/s² at mph should be representative of top end power needs.
- Here that gives 112 kW (same as motor rated power!).
- Maximum speed, flat, 110 kW: 143.5 mph.
 – This defines “top speed” for a vehicle – continuous rating, maximum speed.
- Look like this vehicle runs at 200% rated power for a few seconds to achieve its 6.8 s time.
Examples

- Typical Class 8 tractor-trailer with cab fairing
- Data from NASA Ames and others.
- Frontal area 9.89 m², Cd 0.60, tire resistance 0.007.
- Load to 60000 lb.
Examples

- 70 mph cruise, flat: Traction force 5356 N, power 168 kW.
- 100 mph, flat: Power 402 kW.
- 0.3g acceleration, flat, 30 mph: Force 86.3 kN, power 1.16 MW.
- 0.1 g acceleration, flat, 60 mph: Force 32.4 kN, power 868 kW.
- 5% grade at 72 mph: 18.9 kN, 608 kW.
What energy?

- 70 mph cruise, 90% drivetrain efficiency, plus 1 kW hotel load, for example:
 - \(168 \text{ kW} / 0.9 + 1 \text{ kW} = 187 \text{ kW}\) input, so \(18.9 \text{ kWh/h}\), equal to \(2675 \text{ Wh/mile}\).

- 75 mph cruise, 197 kW traction, 220 kW input, 2930 Wh/mile.

- About 10x compared to passenger car.

- Implies 10x for storage needs!
Examples

Traction power for platform

Power (kW)

Speed (mph)

- a = 0
- a = 0.05g
- a = 0.1g
- a = 0.15g
- a = 0.2g
Could we store 700 kWh on board a truck?

- Diesel at 45000 kJ/kg. If we convert 30% of it, a truck can easily store 300 kg of fuel and has about 4 GJ, or 1125 kWh of useful energy stored up.
- For Li-ion batteries, at a (future) 1000 kJ/kg, 700 kWh is 2.52 GJ, requiring 2520 kg of batteries (5500 lb).
- This is not impossible (about 10% of the loaded mass), but it is a future development.
Baseline Architecture

- Generic architecture for a “series” hybrid electric vehicle.
- This means the energy comes together at an electrical bus.
Baseline Architecture

- Example: Diesel-electric train. Same (with ac motors) but no batteries.
Baseline architecture

- Typical for plug-in hybrid.

![Baseline architecture diagram](image)

Diagram Legend:
- Generator
- Rectifier
- Battery stack
- Engine

Image:
A blue hybrid car in a parking garage.
Battery electric vehicle

- Pure EV, larger battery, typically an on-board charger.

![Diagram of battery electric vehicle components including battery stack, inverter, and drive shaft.](image)