ECE 398GG – ELECTRICAL VEHICLES 3b. Vehicle Basic Dynamics: Energy and Power Needs of Electric Vehicles

P. T. Krein

Department of Electrical and Computer Engineering University of Illinois at Urbana–Champaign

Key Considerations in EV Design and Operation, Part 2

P. T. Krein

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, USA

ECE ILLINOIS

I

- The traction force results push for low drag, low tire loss, low vehicle weight.
- This is true for any vehicle. For an EV, we are trying to keep stored energy as low as possible and get the best result.
- Batteries are expensive even though this is dropping. Today, wholesale Li-ion batteries are about \$200/kWh. Implies \$8000 wholesale for that Nissan 40 kWh pack.
- A gas tank is nowhere near this costly.

Electric storage $\leftarrow \rightarrow$ Electric energy (expensive) (cheap)

Fuel storage ←→ Fuel energy (cheap) (expensive)

- One other way to look at this: What do I get by adding 1 kg of battery (Li-ion)?
- Optimistically, an extra 1000 kJ \rightarrow 280 Wh.
- Force need went up, mgR_t, 0.08 N. At 20 m/s, this would be 1.6 W.
- To drive for 5 hours, this would consume an extra 8 Wh, but we added an extra 280 Wh, so almost all of the extra energy can be used to add to vehicle range.
- Keep in mind that 1 kg of gasoline is about 1.3 L (about 1/3 gallon).

- What are the limits?
 - Structural limits. 60 L of gasoline manage about 50 kg. 40 kWh of batteries (at 180 Wh/kg) – manage about 220 kg.
 - Money. Gas tank is only a few dollars. Batteries above \$200/kWh.
- Structural design becomes much different in the EV context.
- Batteries: large but amenable to many shapes.
- Other points: No fuel or fuel system, no engine.
- Electric motors have high power to weight ratio compared to passenger car engines.

- A safety aspect: What happens to batteries in a wreck?
 - This question also applies to gasoline, but think about what could happen to a vehicle carrying a heavy load of rocks.
 - Many modern designs use an under-carriage glider concept.
- Tesla has models with a 100 kWh pack.
- At 180 Wh/kg, this is 560 kg (1200 lb).

ECE ILLINOIS

Vehicle parameters and performance metrics

- The drive train must deliver force (torque), speed, power, and so on.
- Each will be limited by some aspect of motor, inverter, battery, or other ratings.
- Instead, let us look at the other end: What is needed?

Force and torque

- We need a force at the tire contact patch to propel a vehicle.
- The axle torque for this is f x r, where r is the tire radius.
- Measuring lots of passenger cars, r ≈ 0.3 m (1 foot) is typical.
 We will just use it. Trucks have larger r, etc.

$$f_{traction} = mg\sin\theta + mgR_t + \frac{1}{2}\rho C_d A_f v^2 + m_{eq}a$$

 At low speeds and minimal acceleration, drag does not matter. R_t ~ 0.01, so a slope can dominate.

Force and torque

- Slope is defined for road design in terms of tan θrather than sin θ For 10% or less, there is minimal difference.
- There is a street in Pittsburgh claiming a 37% grade, which is about 20°.
- Maybe there are some steeper parking ramps.
- For tan ⊕ 0.4, we get ⊕ 22° and sin ⊕ 0.37 (still not much difference).

Gradability

- The low-speed force need defines what is called a gradability specification.
- Ability to move on a 30% slope is considered a minimum.
- As you can tell, a 40% slope would be a more plausible rating. A 50% slope gives sin θ = 0.45.
- At 40%, need to deliver (0.37 + R_t) mg for grade and tires.
- For our 2000 kg reference vehicle, we need 7414 N.
- The axle torque is 2224 N-m.

Acceleration

- It is conventional to specify 0-60 mph (or 0-100 km/h) acceleration, and 40-70 mph acceleration.
- These numbers are linked to both force and power.
- Highest power at highest speed.
- BUT, what about RATINGS needs?
- How much time to enter a freeway?
- How much time to conduct a passing maneuver?
- I will let *you* think about whether a 0-60 mph time of 2.0 s is safe, practical, or useful in a passenger car. (This would be 13.4 m/s², 1.36g.)

Acceleration

- This also tells us about *dynamic ratings*. A vehicle can deliver much more than the continuous ratings for ~2 s.
- We also car about continuous ratings.
- Example: Nissan Leaf, Cd =0.28, Af = 2.28 m², 2000 kg.
- Grade to 40%: 7414 N force, 2224 N-m torque.
- Acceleration 0-60 mph, 6 s, 4.47 m/s²:
 - Force: 9454 N at zero speed, 9730 N at 60 mph.
 - Power at highest speed: 261 kW.
- You do not really need this much across the range.
- Good rule of thumb: power at 50 mph and 4 m/s².

Acceleration

- You do not really need this much across the range.
- Good rule of thumb: power at 50 mph and 4 m/s² estimates a vehicle capable of about a 5 s 0-60 mph time.
- Here this is 194 kW.
- What about 5 s for 40 mph to 70 mph? This is 2.68 m/s².
- For this car, P for 70 mph and 2.68 m/s² is 191 kW. Just about the same number.
- We have identified a dynamic peak power rating.

Top speed

- Top speed is another vehicle rating that does not really have direct value.
- From our perspective, it is the highest speed that can be maintained continuously (until energy runs out).
- It matters on German autobahns, for example.
- For our Nissan, what if the continuous rating is ~55% of the peak value? That is 107 kW – right at the motor rated 110 kW.
- Trying out numbers, I get 143 mph. (Tesla model 3 is about this value as well.)
- Gear ratios and transmission details might not support this.

- Any vehicle has a *final drive ratio*. Simple for an EV: the ratio of the motor shaft rotation speed to the axle rotation speed.
- Most cars have multi-speed transmissions and therefore multiple ratios.
- Many EVs use a single fixed ratio. Sometimes this is called "direct drive," but this is misleading because a 1:1 final drive ratio yields an extremely heavy motor.
- The Nissan Leaf has a final drive ratio of 8.193:1.

Gearing

- What does this mean? For a rotating wheel, the rim speed is
 v = r ω, where ω is angular speed.
- A tire with r = 0.3 at vehicle speed of 75 mph (33.5 m/s), this means that ω = 33.5 m/s ÷ 0.3 m = 112 rad/s, 1067 RPM.
- A final drive ratio of 8.193:1 means a motor speed of 8742 RPM.
- The Leaf has a motor speed limit of 9795 RPM, so this will determine the top speed (about 84 mph).

ECE ILLINOIS

 At 143 mph, the motor needs to spin at 16,700 RPM.

Gearing

- What about torque?
- We wanted 2224 N-m.
- Gears are "mechanical transformers" with P_{in}≈P_{out}, speeds in proportion to the ratio, torques in inverse proportion to the ratios.
- With a final drive ratio of 8.193:1, the motor torque requirement is 2224/8.193 = 271 N-m.
- This is 200 lb-ft. The Leaf is rated to 236 lb-ft.

What else?

- Continuous power also enters for other cases of long-range driving.
- What power is needed to hold 80 mph up a 5% grade?
- For this car, 58 kW.
- What if it is towing, adding another 1000 kg and doubling the frontal area? Power at 80 mph up a 5% grade will be 96 kW.
- You can see where this is going.

Targets so far

- Gradability determines axle torque.
- Acceleration determines peak power.
- Top speed is linked to continuous power.
- Continuous power is also linked to speed on grade and to towing.
- Strong passenger car performance: 100 kW continuous, 200 kW peak.
- Solid performance: 60 kW continuous, 120 kW peak.
- Few drivers exceed the latter numbers even when the higher ones are possible.
- Motor torque rating related to gear ratio(s).

Limits?

- What limits power?
 - Motor thermal capability (efficiency is not 100%).
 - Inverter thermal capability.
 - Inverter electrical ratings.
 - Battery pack C rates (and thermal management).
 - Keep the tires on the pavement!
- What limits torque?
 - Motor torque is inherent to mass electric motors have a general torque to weight ratio. 2 N-m/kg is a very good value.

Electric Charger Levels

- Level 1 convenience outlet, 0 to 3.8 kW (typical 1.4 kW).
- Level 2 dedicated charge point, 4 to 17 kW (typical 6 kW).
- Level 3 fast charging, 25 kW and up (typical 50 kW).
 - Some are direct dc chargers.
 - Special charge points, not usual at homes or small businesses.

ECE ILLINOIS

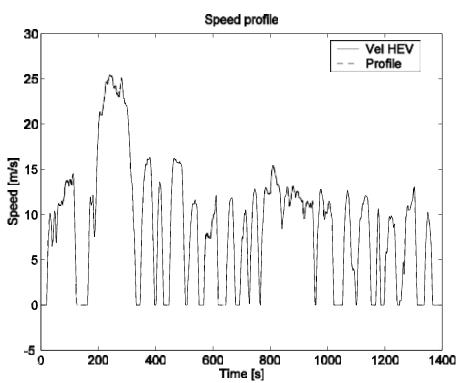
- Nissan Leaf (2020)
 - Battery options, 40 kWh battery is what we have been exploring
 - 110 kW motor
 - 320 N-m motor torque, from 0 to 3283 RPM
 - Full motor power available, at reduced torque to 9795 RPM
 - Final drive ratio 8.193:1, single speed
 - Unloaded weight 3540 lb
 - Gross vehicle weight rating 4751 lb
 - Drag coefficient 0.28
 - 6.6 kW charger

- Kia Niro EV (2022)
 - 64 kWh battery
 - 150 kW motor
 - 395 N-m motor torque, from 0 to 3800 RPM
 - Full motor power available, at reduced torque to 8000 RPM
 - Final drive ratio 8.206:1, single speed
 - Unloaded weight 3854 lb
 - Gross vehicle weight rating 4916 lb
 - Drag coefficient 0.29
 - 7.2 kW charger

- Ford F-150 Lightning (2022)
 - 110 kWh battery
 - 159 kW motor, two in place
 - 1050 N-m motor torque
 - Final drive ratio, manufacturer has not released
 - Unloaded weight 6250 lb
 - Gross vehicle weight rating 8250 lb
 - Drag coefficient, manufacturer has not released
 - 7.7 kW charger

- BYD T3 van (2018)
 - 50 kWh battery
 - 94 kW motor
 - 180 N-m motor torque
 - Final drive ratio ??
 - Unloaded weight 1740 kg
 - Gross vehicle weight rating 2420 kg
 - Drag coefficient ??
 - 6.6 kW charger
 - Gradability >20%
 - Top speed 100 km/h

- Chrysler Pacifica Plug-In Hybrid (2021)
 - (32 miles EV only range)
 - Motor power ??
 - Motor torque ??
 - Final drive ratio ??
 - Unloaded weight 5010 lb
 - Gross vehicle weight rating 6300 lb
 - Drag coefficient 0.30
 - Charger: probably 4.8 kW



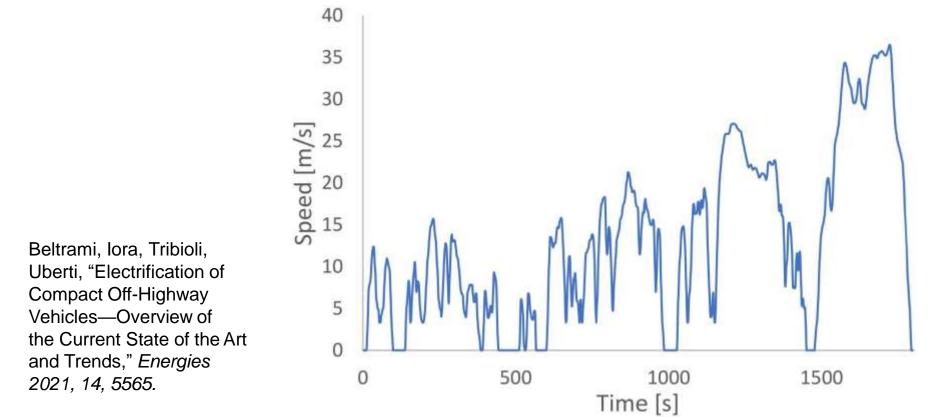
Drive cycles

- In fuel-driven cars, it is difficult to model energy usage.
- Standard *drive cycles* are defined to support consistent comparison.

 Classic example: FTP-75

Drive cycles

- FTP-75, the EPA Federal Test Procedure, follows a test developed from instrumenting a postal truck in Philadelphia in the 1970s.
- FTP-75 uses the older Urban Dynamometer Driving Schedule, repeating the first 505 seconds at the end.
- There are many other standard drive cycles:
 - US-06
 - SC-03
 - NEDC
 - WLTP



Drive cycles

29

 Several "Worldwide Harmonised Light Vehicles Test Procedures"

ECE ILLINOIS

Why?

- Seek to capture realistic driving conditions.
- Trying to support consistent comparisons.
- Try to get results likely to reflect real-world driver experience.

www.fueleconomy.gov

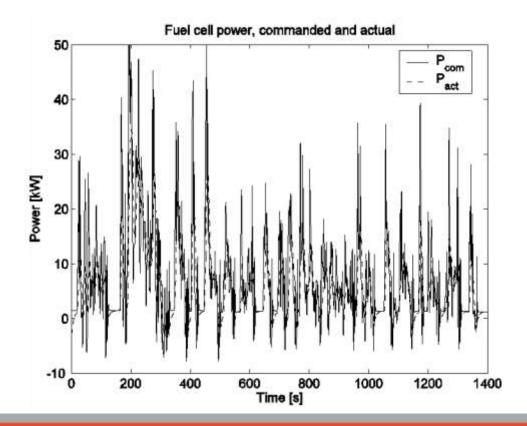
30

How?

- A trained driver controls the car to track a speed vs. time curve shown on a display.
- A chassis dynamometer sets the load to match traction requirements at each operating point.
- With experience, this is highly consistent and repeatable.

www.fueleconomy.gov

More information


- Standard drive cycles are posted as Excel files.
- See, for example, unece.org. We will post these on the course web site.
- Files include speed, second-by-second, through the test.
- Some also list acceleration. Otherwise, this can be computed from interpolation.

 For an electric car, speed and acceleration vs. time can be used in the basic force and power characteristics.

EV aspects

- This gives force or power vs. time.
- We know the required traction output.
- A spreadsheet computation can keep track of output energy used in each second.
- For an EV, it is straightforward to estimate energy usage over (any) complete drive cycle.
- With good motor and battery models, we can estimate energy *input*.
- For a fueled car, this is not really possible the direct driver measurement makes more sense.

EV aspects

- Any of us can estimate the effects of various vehicle parameters and design choices on mileage for a specific drive cycle.
- EV performance evaluation starts with models and analysis.
- Tests on roadways can validate expected results.
- One simple test: Coastdown on level road (should show force vs. time).

Battery energy and power density

- Energy stored per unit mass and per unit volume are key measures for batteries.
- Energy rate (power) per unit mass and volume or also important.
- The capacity rate (*C* rate) sets a reference point for energy and power.
- Also vital: Cycle life, cycle efficiency, self discharge, thermal capability.

Perspective

- Global battery market in 2019 was more than \$100 billion. (<u>http://www.grandviewresearch.com/industry-analysis/battery-market</u>)
- Of this, about 30% lead acid and about 30% lithium ion.
- Familiar use for lead-acid batteries: vehicle starting, lighting, and ignition (SLI).
- Massive use: Backup and auxiliary power for telecommunications and computing.

Rechargeable types

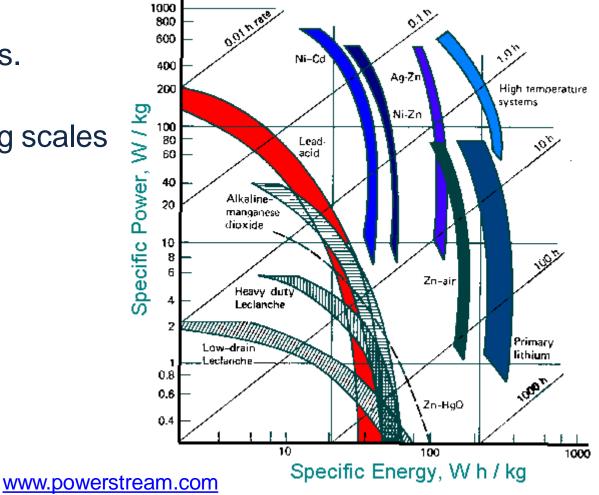
- Rechargeable batteries (secondary batteries) have been around for more than 150 years.
- Lead-acid batteries date to 1859. The overall reaction involves metallic lead, lead oxide, and sulfuric acid on the one side, with lead sulfate and water on the other side.
- Nickel-iron batteries (1901) were favored by Edison and used in Detroit Electric and other electric cars.

Courtesy I. Pitel

ECE ILLINOIS

Rechargeable types

- Nickel cadmium batteries (NiCd) (1899) can have high specific power, with common commercial devices rated to 20C.
- Cadmium is extremely toxic, and NiCd batteries are phasing out.
- Nickel-metal-hydride (NiMH) batteries (1967) avoid cadmium but are near-drop-in replacements for NiCd.
- They are still common in hybrid cars because the power density can be higher than for lithium cells.


A few types (various sources, includes www.powerstream.com)

Туре	Cell voltage (room temp)	Energy density	Power density	Self discharge	Charge efficiency (typical)	Cycle life
Lead acid	2.04 V	35 Wh/kg	600 W/kg	16% per month	80%	200
Nickel cadmium	1.30 V	60 Wh/kg	600 W/kg	10% per month	70%	>5000
Nickel metal hydride	1.35 V	100 Wh/kg	600 W/kg	10% per month (but 20% first day)	75%	500
Sodium sulfur	2.08 V (350°C)	110 Wh/kg	150 Wh/kg		85%	4500
Vanadium redox	1.41 V	20 Wh/kg			75%	>20,000
Lithium ion	Variable to 4.1 V	200 Wh/kg	300 W/kg	2% per month	90%+	2000
Lithium ion (polymer)	Variable to 4.1 V	200 Wh/kg	400 Wh/kg	5% per month	90%+	500

Ragone Plot

- Specific power vs. specific energy
- Notice the log-log scales

Present, future

- Although there are many rechargeable battery chemistries, lead acid, NiMH, and lithium-ion cells are the only ones in broad commercial application.
- Lead-acid batteries for SLI, NiMH for power-dense applications, Li-ion for energy dense applications.
- Future? Dozens of chemistries in various lab stages.
 - The ultimate could be related to a combination of lithium (the most electropositive element) and fluorine (the most electronegative element. Could yield a 6 V cell.
 - Mg-ion and Na-ion cells. Both in active development.
 - Lithium-air batteries are more akin to fuel cells. As batteries, they need much improvement on reversibility, efficiency, and other challenges.

ECE ILLINOIS

