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 The traction force results push for low drag, low tire loss, low 

vehicle weight.

 This is true for any vehicle. For an EV, we are trying to keep 

stored energy as low as possible and get the best result.

 Batteries are expensive even though this is dropping. Today, 

wholesale Li-ion batteries are about $200/kWh. Implies

$8000 wholesale for that Nissan 40 kWh pack.

 A gas tank is nowhere near this costly.

Electric storage  Electric energy 

(expensive) (cheap)

Fuel storage  Fuel energy 

(cheap) (expensive)
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Electric vehicle size andweight issues



 One other way to look at this: What do I get by adding 1 kg of 

battery (Li-ion)?

 Optimistically, an extra 1000 kJ  280 Wh.

 Force need went up, mgRt, 0.08 N. At 20 m/s, this would be

1.6 W.

 To drive for 5 hours, this would consume an extra 8 Wh, but 

we added an extra 280 Wh, so almost all of the extra energy 

can be used to add to vehicle range.

 Keep in mind that 1 kg of gasoline is about 1.3 L 

(about 1/3 gallon).
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Electric vehicle size andweight issues



Electric vehicle size andweight issues

 What are the limits?

– Structural limits. 60 L of gasoline – manage about 50 kg. 40 kWh of 

batteries (at 180 Wh/kg) – manage about 220 kg.

– Money. Gas tank is only a few dollars. Batteries above $200/kWh.

 Structural design becomes much different in the EV context.

 Batteries: large but amenable to many shapes.

 Other points: No fuel or fuel 

system, no engine.

 Electric motors have high 

power to weight ratio 

compared to passenger car 

engines.
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Electric vehicle size andweight issues
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www.carmagazine.co.uk

 A safety aspect: What happens to batteries in a wreck?

– This question also applies to gasoline, but think about what could 

happen to a vehicle carrying a heavy load of rocks.

– Many modern designs use an under-carriage glider concept.

 Tesla has models with a 100 kWh pack.

 At 180 Wh/kg, this is 560 kg (1200 lb).

http://www.carmagazine.co.uk/


 The drive train must deliver force (torque), speed, power, and 

so on.

 Each will be limited by some aspect of motor, inverter, battery, 

or other ratings.

 Instead, let us look at the other end: What is needed?
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Vehicleparametersandperformance metrics



 We need a force at the tire contact patch to propel a vehicle.

 The axle torque for this is f x r, where r is the tire radius.

 Measuring lots of passenger cars, r ≈ 0.3 m (1 foot) is typical.

We will just use it. Trucks have larger r, etc.

 At low speeds and minimal acceleration, drag does not 

matter. Rt ~ 0.01, so a slope can dominate.

Forceandtorque

2
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2
traction t d f eq

f  mg sin mgR  C A v m a



 Slope is defined for road design in terms of tan θrather than  

sin θ. For 10% or less, there is minimal difference.

 There is a street in Pittsburgh claiming a 37% grade, which is 

about 20°.

 Maybe there are some steeper parking ramps.

 For tan θ= 0.4, we get θ= 22° and sin θ= 0.37 (still not  

much difference).
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Forceandtorque



 The low-speed force need defines what is called a gradability

specification.

 Ability to move on a 30% slope is considered a minimum.

 As you can tell, a 40% slope would be a more plausible 

rating. A 50% slope gives sin θ= 0.45.

 At 40%, need to deliver (0.37 + Rt) mg for grade and tires.

 For our 2000 kg reference vehicle, we need 7414 N.

 The axle torque is 2224 N-m.
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Gradability



 It is conventional to specify 0-60 mph (or 0-100 km/h) 

acceleration, and 40-70 mph acceleration.

 These numbers are linked to both force and power.

 Highest power at highest speed.

 BUT, what about RATINGS needs?

 How much time to enter a freeway?

 How much time to conduct a passing maneuver?

 I will let you think about whether a 0-60 mph time of 2.0 s is 

safe, practical, or useful in a passenger car.

(This would be 13.4 m/s², 1.36g.)
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Acceleration



 This also tells us about dynamic ratings.A vehicle can deliver 

much more than the continuous ratings for ~2 s.

 We also car about continuous ratings.

 Example: Nissan Leaf, Cd =0.28,Af = 2.28 m², 2000 kg.

 Grade to 40%: 7414 N force, 2224 N-m torque.

 Acceleration 0-60 mph, 6 s, 4.47 m/s2:

– Force: 9454 N at zero speed, 9730 N at 60 mph.

– Power at highest speed: 261 kW.

 You do not really need this much across the range.

 Good rule of thumb: power at 50 mph and 4 m/s2.
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Acceleration



 You do not really need this much across the range.

 Good rule of thumb: power at 50 mph and 4 m/s2 estimates a 

vehicle capable of about a 5 s 0-60 mph time.

 Here this is 194 kW.

 What about 5 s for 40 mph to 70 mph? This is 2.68 m/s2.

 For this car, P for 70 mph and 2.68 m/s2 is 191 kW. Just 

about the same number.

 We have identified a dynamic peak power rating.
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Acceleration



 Top speed is another vehicle rating that does not really have 

direct value.

 From our perspective, it is the highest speed that can be 

maintained continuously (until energy runs out).

 It matters on German autobahns, for example.

 For our Nissan, what if the continuous rating is ~55% of the 

peak value? That is 107 kW – right at the motor rated 110 

kW.

 Trying out numbers, I get 143 mph. (Tesla model 3 is about 

this value as well.)

 Gear ratios and transmission details might not support this.
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Topspeed



 Any vehicle has a final drive ratio. Simple for an EV: the ratio 

of the motor shaft rotation speed to the axle rotation speed.

 Most cars have multi-speed transmissions and therefore 

multiple ratios.

 Many EVs use a single fixed ratio. Sometimes this is called 

“direct drive,” but this is misleading because a 1:1 final drive 

ratio yields an extremely heavy motor.

 The Nissan Leaf has a final drive ratio of 8.193:1.
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Gearing



 What does this mean? For a rotating wheel, the rim speed is 

v = r ω, where ωis angular speed.

 A tire with r = 0.3 at vehicle speed of 75 mph (33.5 m/s), this 

means that ω= 33.5 m/s ÷ 0.3 m = 112 rad/s, 1067 RPM.

 A final drive ratio of 8.193:1 means a motor speed of 8742 

RPM.

 The Leaf has a motor speed limit of 9795 RPM, so this will 

determine the top speed (about 84 mph).

 At 143 mph, the motor needs to 

spin at 16,700 RPM.

16

Gearing



 What about torque?

 We wanted 2224 N-m.

 Gears are “mechanical transformers” with Pin≈Pout, speeds in 

proportion to the ratio, torques in inverse proportion to the 

ratios.

 With a final drive ratio of 8.193:1, the motor torque 

requirement is 2224/8.193 = 271 N-m.

 This is 200 lb-ft. The Leaf is rated to 236 lb-ft.
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Gearing



 Continuous power also enters for other cases of long-range 

driving.

 What power is needed to hold 80 mph up a 5% grade?

 For this car, 58 kW.

 What if it is towing, adding another 1000 kg and doubling the 

frontal area? Power at 80 mph up a 5% grade will be 96 kW.

 You can see where this is going.
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Whatelse?



 Gradability determines axle torque.

 Acceleration determines peak power.

 Top speed is linked to continuous power.

 Continuous power is also linked to speed on grade and to 

towing.

 Strong passenger car performance: 100 kW continuous, 200 

kW peak.

 Solid performance: 60 kW continuous, 120 kW peak.

 Few drivers exceed the latter numbers even when the higher 

ones are possible.

 Motor torque rating related to gear ratio(s).
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Targetssofar



 What limits power?

– Motor thermal capability (efficiency is not 100%).

– Inverter thermal capability.

– Inverter electrical ratings.

– Battery pack C rates (and thermal management).

– Keep the tires on the pavement!

 What limits torque?

– Motor torque is inherent to mass – electric motors have a general 

torque to weight ratio. 2 N-m/kg is a very good value.
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Limits?



 Level 1 – convenience outlet, 0 to 3.8 kW (typical 1.4 kW).

 Level 2 – dedicated charge point, 4 to 17 kW (typical 6 kW).

 Level 3 – fast charging, 25 kW and up (typical 50 kW).

– Some are direct dc chargers.

– Special charge points, not usual at homes or small businesses.

Electric ChargerLevels
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 Nissan Leaf (2020)

– Battery options, 40 kWh battery is what we have been exploring

– 110 kW motor

– 320 N-m motor torque, from 0 to 3283 RPM

– Full motor power available, at reduced torque to 9795 RPM

– Final drive ratio 8.193:1, single speed

– Unloaded weight 3540 lb

– Gross vehicle weight rating 4751 lb

– Drag coefficient 0.28

– 6.6 kW charger
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Some ratingexamples



 Kia Niro EV (2022)

– 64 kWh battery

– 150 kW motor

– 395 N-m motor torque, from 0 to 3800 RPM

– Full motor power available, at reduced torque to 8000 RPM

– Final drive ratio 8.206:1, single speed

– Unloaded weight 3854 lb

– Gross vehicle weight rating 4916 lb

– Drag coefficient 0.29

– 7.2 kW charger
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Some ratingexamples



 Ford F-150 Lightning (2022)

– 110 kWh battery

– 159 kW motor, two in place

– 1050 N-m motor torque

– Final drive ratio, manufacturer has not released

– Unloaded weight 6250 lb

– Gross vehicle weight rating 8250 lb

– Drag coefficient, manufacturer has not released

– 7.7 kW charger
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Some ratingexamples



 BYD T3 van (2018)

– 50 kWh battery

– 94 kW motor

– 180 N-m motor torque

– Final drive ratio ??

– Unloaded weight 1740 kg

– Gross vehicle weight rating 2420 kg

– Drag coefficient ??

– 6.6 kW charger

– Gradability >20%

– Top speed 100 km/h
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Some ratingexamples



 Chrysler Pacifica Plug-In Hybrid (2021)

– (32 miles EV only range)

– Motor power ??

– Motor torque ??

– Final drive ratio ??

– Unloaded weight 5010 lb

– Gross vehicle weight rating 6300 lb

– Drag coefficient 0.30

– Charger: probably 4.8 kW
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Some ratingexamples



 In fuel-driven cars, it is difficult to model energy usage.

 Standard drive cycles are defined to support consistent 

comparison.

 Classic 

example:  

FTP-75

Drive cycles
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 FTP-75, the EPA Federal Test Procedure, follows a test 

developed from instrumenting a postal truck in Philadelphia in 

the 1970s.

 FTP-75 uses the older Urban Dynamometer Driving 

Schedule, repeating the first 505 seconds at the end.

 There are many other standard drive cycles:

– US-06

– SC-03

– NEDC

– WLTP
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Drive cycles



 Several “Worldwide Harmonised Light Vehicles Test 

Procedures”

Drive cycles

Beltrami, Iora, Tribioli, 

Uberti, “Electrification of 

Compact Off-Highway 

Vehicles—Overview of

the Current State of the Art  

and Trends,” Energies 

2021, 14, 5565.
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 Seek to capture realistic driving conditions.

 Trying to support consistent comparisons.

 Try to get results likely to reflect real-world driver experience.

Why?

www.fueleconomy.gov
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 A trained driver controls the car to track a speed vs. time 

curve shown on a display.

 A chassis dynamometer sets the load to match traction 

requirements at each operating point.

 With experience, this is highly consistent and repeatable.

How?

www.fueleconomy.gov
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 Standard drive cycles are posted as Excel files.

 See, for example, unece.org. We will post these on the 

course web site.

 Files include speed, second-by-second, through the test.

 Some also list acceleration. Otherwise, this can be computed 

from interpolation.
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More information



 For an electric car, speed and acceleration vs. time can be 

used in the basic force and power characteristics.

EVaspects

33



 This gives force or power vs. time.

 We know the required traction output.

 A spreadsheet computation can keep track of output energy 

used in each second.

 For an EV, it is straightforward to estimate energy usage over 

(any) complete drive cycle.

 With good motor and battery models, we can estimate energy

input.

 For a fueled car, this is not really possible – the direct driver 

measurement makes more sense.
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EVaspects



 Any of us can estimate the effects of various vehicle 

parameters and design choices on mileage for a specific 

drive cycle.

 EV performance evaluation starts with models and analysis.

 Tests on roadways can validate expected results.

 One simple test: Coastdown on level road (should show force 

vs. time).

35

EVaspects



Batteries
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• Energy stored per unit mass and per unit volume are key 

measures for batteries.

• Energy rate (power) per unit mass and volume or also 

important.

• The capacity rate (C rate) sets a reference point for energy 

and power.

• Also vital: Cycle life, cycle efficiency, self discharge, thermal 

capability.
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Batteryenergyandpowerdensity



• Global battery market in 2019 was more than $100 billion.
(http://www.grandviewresearch.com/industry-analysis/battery-market)

• Of this, about 30% lead acid and about 30% lithium ion.

• Familiar use for lead-acid batteries: vehicle starting, lighting, 

and ignition (SLI).

• Massive use: Backup and auxiliary power for 

telecommunications and computing.
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Perspective

http://www.grandviewresearch.com/industry-analysis/battery-market


 Rechargeable batteries (secondary batteries) have been 

around for more than 150 years.

 Lead-acid batteries date to 1859. The overall reaction 

involves metallic lead, lead oxide, and sulfuric acid on the 

one side, with lead sulfate and water on the other side.

 Nickel-iron batteries 

(1901) were favored 

by Edison and used in 

Detroit Electric and 

other electric cars.

Rechargeabletypes

Courtesy I. Pitel
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 Nickel cadmium batteries (NiCd) (1899) can have high 

specific power, with common commercial devices rated to 

20C.

 Cadmium is extremely toxic, and NiCd batteries are phasing 

out.

 Nickel-metal-hydride (NiMH) batteries (1967) avoid cadmium 

but are near-drop-in replacements for NiCd.

 They are still common in hybrid cars because the power 

density can be higher than for lithium cells.
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Rechargeabletypes



Afewtypes (varioussources, includes www.powerstream.com)
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Type Cell voltage 
(room temp)

Energy 
density

Power 
density

Self 
discharge

Charge 
efficiency  
(typical)

Cycle life

Lead acid 2.04 V 35 Wh/kg 600 W/kg 16% per  
month

80% 200

Nickel 
cadmium

1.30 V 60 Wh/kg 600 W/kg 10% per  
month

70% >5000

Nickel metal  
hydride

1.35 V 100 Wh/kg 600 W/kg 10% per 
month (but 
20% first day)

75% 500

Sodium  
sulfur

2.08 V 
(350°C)

110 Wh/kg 150 Wh/kg -- 85% 4500

Vanadium  
redox

1.41 V 20 Wh/kg -- -- 75% >20,000

Lithium ion Variable to
4.1 V

200 Wh/kg 300 W/kg 2% per  
month

90%+ 2000

Lithium ion 
(polymer)

Variable to
4.1 V

200 Wh/kg 400 Wh/kg 5% per  
month

90%+ 500



 Specific power vs. 

specific energy

 Notice the log-log scales

RagonePlot

www.powerstream.com
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http://www.powerstream.com/


 Although there are many rechargeable battery chemistries, 

lead acid, NiMH, and lithium-ion cells are the only ones in 

broad commercial application.

 Lead-acid batteries for SLI, NiMH for power-dense 

applications, Li-ion for energy dense applications.

 Future? Dozens of chemistries in various lab stages.

– The ultimate could be related to a combination of lithium (the most 

electropositive element) and fluorine (the most electronegative 

element. Could yield a 6 V cell.

– Mg-ion and Na-ion cells. Both in active development.

– Lithium-air batteries are more akin to fuel cells. As batteries, they 

need much improvement on reversibility, efficiency, and other 

challenges.
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Present, future


