

INFORMATION SOURCES AND ASSUMPTIONS

We make detailed use of data on the energy and transportation sectors of two US agencies – EPA, the Environmental Protection Agency and EIA, the Energy Information Administration
 Specifically, we make use of the EPA fuel economy ratings of vehicles and their emissions and use the EIA data for the US generation resource mix ECE 398GG © 2022 - 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

INFORMATION SOURCES AND ASSUMPTIONS

- Iosses in grids are, typically, under 8 % and we use 5 % for the combined transmission/ distribution grid losses incurred to deliver the electricity from a power plant to a charger
- the conversion of the primary energy source to electricity varies widely – depends both on the primary energy source and the specific generation technology

ECE 398GG © 2022 – 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

MANUFACTURERS AND VEHICLES WITH THE HIGHEST / LOWEST FE: 2015 – 2022								
model year	highest FE (mpg) manufactural model	lowest	highest FE		highest FE gasoline		ember f	
		FE (mpg) manufacture	vehicle	real- world FE in mpge	vehicle	real- world FE in mpg	. 12, issued Dece 2/420r22029.pd	
2016	Mazda	Stellantis	BMW i3	121.3	Mazda 2	37	-001, p	
2017	Honda	Stellantis	Hyundai Ioniq	132.6	Mitsubishi Mirage	41	A-420-S-25 (documents	
2018	Tesla	Stellantis	Hyundai Ioniq	132.6	Mitsubishi Mirage	41	eport," EP ystem/files	
2019	Tesla	Stellantis	Hyundai Ioniq	132.6	Mitsubishi Mirage	41	e Trends R v.epa.gov/s	
2020	Tesla	Stellantis	Tesla 3 SR+	138.6	Mitsubishi Mirage	41	Automotiv https://www	
2021	Tesla	Stellantis	Tesla 3 SR+	139.1	Mitsubishi Mirage	40	2022 EPA le online at	
2022*	Tesla	Stellantis	Lucid Air	131.4	Mitsubishi Mirage	40	EPA, "Thu 22; availabl	
* preliminary data subject to change ECE 398GG © 2022 – 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.								

11

EPA MODEL YEAR 2022 *EV* FUEL ECONOMY METRICS

manufacturer	model	electricity consumption in kWh/100mi	FE in mpge			
GM	Bolt	28	120			
Nissan	Leaf 62 kWh	31	108			
Tesla	Model 3 LR	26	131			
ECE 398GG © 2022 – 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.						

EFFICIENCY NOTIONS or, equivalently input k = output k - 1 k = 1, 2, ..., N with input 1 = system input output N = system output Image: The efficiency η_k of each subsystem k is given by $\eta_k = \frac{output k}{input k}$ k = 1, 2, ..., N ECE 398GG © 2022 - 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 18

WELL – TO – WHEELS EV EFFICIENCY ANALYSIS

WELL – TO – WHEELS EV EFFICIENCY ANALYSIS

CCNG generation plant is

 $91.5\% \times 98.5\% = 0.90$

□ A typical efficiency of a *CCNG* plant is 60 % - i.e.,

the conversion of the caloric contents of NG into

electricity incurs a loss of 40 %

□ The electricity output by the *CCNG* is injected

into the transmission grid and, subsequently, the ECE 398GG © 2022 – 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 2

WELL – TO – WHEELS EV EFFICIENCY ANALYSIS

to charge the *EV* batteries for its use to move the wheels of the *EV* through the deployment of the electric motors & drives without a transmission system or any moving parts – a far-more simple mechanism than the engine of an *ICEV*The highly-efficient electric motor uses the *DC* electricity from the battery, which an inverter *ECE* 398GG © 2022 – 2023 *George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.*

OEM REAL-WORLD	FUEL	ECO	VON	AND
CO ₂ EMISSION EST	MATES	: <i>my</i>	2020 -	2022

	my 2020 final		my 2021 final		my 2022 preliminary		
manufacturer	real-world	real-world	real-world	real-world	real-world	real-world	
, in the second s	FE (mpg)	CO ₂ (g/mi)	FE (mpg)	CO ₂ (g/mi)	FE (mpg)	CO ₂ (g/mi)	
BMW	25.5	347	25.8	339	25.7	341	
Ford	23.0	386	22.9	385	23.0	382	
GM	23.0	386	21.6	414	22.2	400	
Honda	29.1	305	28.5	312	28.3	315	
Hyundai	28.4	312	28.5	310	29.1	302	
Kia	27.7	320	28. 7	310	28.7	305	
Mazda	27.9	319	27.4	324	26.5	335	
Mercedes	23.4	379	23.6	376	24.6	359	
Nissan	27.9	317	28.6	311	28.0	316	
Stellantis	21.3	418	21.3	417	21.6	410	
Subaru	28.5	312	28.8	309	28.0	317	
Tesla	119.1	0	123.9	0	121.5	0	
Toyota	27.0	329	27.1	327	28.0	316	
₩ VW	24.9	354	24.7	352	27.7	306	
all OEMs	25.4	349	25.4	347	26.4	331	
Source: The 2022 EPA Automotive Trends Report; available on-line at https://www.epa.gov/system/files/documents/2022-12/420r22029.pdf							
ECE 398GG © 2022 – 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 31							

EV GHG EMISSION ANALYSIS

- We have established the fact that *EV*s are very efficient means to use primary energy resources to convert them into transportation miles; next, we focus on the *EV* environmental impacts
- Unlike *ICEV*s that run on gasoline and diesel fuels and release tailpipe emissions that include *CO*₂ produced by fuel combustion, *EV*s do not produce such emissions; but, the electricity generation required for *EV* operations is accompanied
 ECE 398GG © 2022 – 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

33

EV GHG EMISSION ANALYSIS

EPA IS A KEY DATA SOURCE

EPA has collected data on every new light-duty

vehicle (*LDV*) model sold in the *US* since 1975

□ The data are obtained from either the tests

performed by EPA at its National Vehicle and Fuel

Emissions Laboratory in Ann Arbor, MI, or directly

from the manufacturers as the results of the

deployment of official *EPA* test procedures

ECE 398GG © 2022 – 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EPA IS A KEY DATA SOURCE

 The collected data support several significant national programs: the *EPA* criteria pollutant and *GHG* standards; the *Department of Transportation National Highway Traffic Safety Administration* (*NHTSA*); the *Corporate Average Fuel Economy* (*CAFE*) standards; and vehicle *Fuel Economy & Environment* labels
 These collected annual data sets allow *EPA* to

provide a *comprehensive analysis* of the automotive industry since 1975

ECE 398GG © 2022 – 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EV GHG EMISSION ANALYSIS

EV GHG EMISSION ANALYSIS

 □ We can determine the FE of an ICEV that equals Tesla 3 LR's 99.7 g/mi emissions using the equation 8,887 g/gal x 1 gal/x mi = 99.7 g/mi so that x = 89 mpg, a value above the efficiency of any gasoline ICEV that ever existed
 ECE 398GG © 2022-2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EV LIFECYCLE EMISSIONS

EV LIFECYCLE EMISSIONS

this battery pack entails CO_2 emissions may be estimated to amount to $54 \ kWh \times 150 \ kg \ CO_2 \ / \ kWh = 8,100 \ kg \ CO_2$ The advertised battery life of *Tesla EV*s is 300,000 *mi*; the implication is that the CO_2 emissions *per mi* are $8,100 \ kg \ CO_2 \ \div \ 300,000 \ mi = 27 \ g \ CO_2 \ / \ mi$ ECE 398GG @ 2022 - 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE SIGNIFICANCE OF $EV CO_2$ EMISSIONS

The *EV CO*₂ emissions including those in the battery pack manufacture are considerably below those of any *ICEV* that is manufactured today
 An *ICEV*'s fuel efficiency is set in stone once the car is manufactured and therefore, so are its *CO*₂ emissions; an *EV* may take advantage of renewable resources to lower its *CO*₂ emissions

THE SIGNIFICANCE OF EV CO2 EMISSIONS

□ As the integration of *renewable energy resources* into

today's grids continues with the objective to

attain deeper penetrations of those resources,

the decarbonization of the electricity sector

progresses in the desired direction; moreover,

the incentives for solar installations are enticing

more consumers to become *prosumers* ECE 398GG © 2022 – 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

51

THE SIGNIFICANCE OF EV CO₂ EMISSIONS

EV charging with 100 % renewable electricity implies 0 g CO₂/mi emissions by such *EV*s; moreover, the use of 100 % renewable electricity to produce the battery packs also results in 0 CO₂ emissions
 The broader deployment of renewable resources can therefore further reduce the *EV* CO₂ footprint; the *ICEV*s' inherent reliance on fossil fuels cannot provide such environmental improvements

