

LIST: HAZARDS RELATED TO EV BATTERIES

external hazards	internal hazards
debris impact to enclosure	isolation failure
excessive heat / fire	internal short circuit
water immersion	excessive cell temperature
static load	vented gas products
external electrical short	fluid leak

ECE 398GG © 2022 - 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

TABLE OF COMMON ELECTROLYTE MATERIALS

Batteries currently use $LiPF_6$ (lithium hexafluorophosphate) salt in organic solution of *ethylene carbonate* (EC) solvent and other viscosity modifiers (*diethylcarbonate* (DEC), *dimethylcarbonate* (DMC), *ethylmethylcarbonate* (EMC): for example is 1.2 M LiPF_6 in 3:7 EC:EMC – is considered a standard test electrolyte

9

CHEMICAL vs. ELECTROCHEMICAL ENERGY

Graphite + Li:

$$C_6 + Li = LiC_6; 4.9 \ kJ/g$$

 $LiC_6 + 6 \ 1/4 \ O_2 = \frac{1}{2} \ Li_2O + 6 \ CO_2; \ 63.6 \ kJ/g$

□ In the presence of *oxygen* and heat, the energy per

gram of lithiated graphite anode released is 13 X that

of the stored electrochemical energy

□ A similar issue is faced by the decomposition of a

metal oxide anode

ECE 398GG © 2022 - 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CELL POWER & HEAT GENERATION

CELL POTENTIAL TEMPERATURE RISE

Assume	e a 10- <i>s</i> di	scharge	at a spec	ified volt	$age = f(V_{max}):$	
	10s discharge					
	Vmin=f(Vmax)		I (A)	T (°C)		
	2Vmax/3	3 V	933	36		
	Vmax/2	2 V	1400	80		
	Vmax/3	1 V	1867	142		
	Vmax/4	1 V	2100	180		
Assume rejected	e cell is a I into the	diabatic, environi	even tho nent	ugh ther	e will be heat	
The tab	le shows	the pote	ntial tem	perature	rise that can be	
achieve ECE 398GG © 2	d inside t	he cell e Gross, Univers	ity of Illinois at U	rbana-Champaig	n, All Rights Reserved. 2(

SOME SALIENT <i>Lt-ION</i> CELL TEMPERATURES Some temperature-based events:					
	T (°C) Event				
	-46	Most electrolytes precipitate salt or freeze			
	-40 to +55	Operating range			
	+65	Electrolyte salt instability against graphite			
	+85	SEI layer begins to dissolve, allowing			
		electrolyte reaction with anode			
		Earliest onset of metal-oxide cathode			
	+115	decomposition			
	+130	Melting Point of Polyethylene (separator)			
	+140	Flashpoint of some electrolyte solvents			
	+150	Melting Point of Polypropylene (separator)			
	+180	Melting Point of Li metal			
	+210	Metal Phosphate Decomposition			
	+680	Melting Point of Al metal			
<i>ECE</i> 398GG © 202	2 - 2023 George Gro	oss, University of Illinois at Urbana-Champaign, All Rights Reserved.			

THE PARTS OF AN *HV* PROPULSION SYSTEM

HIGH VOLTAGE INTER – LOCK (HVIL)

- □ Often sourced by the battery manufacturer as part of the *Battery Management System*
- □ The signal is normally a *pulse wave modulated (PWM)* signal, under 10 *mA*
- The return of the signal is sensed within the battery and at least at one additional point in the propulsion system
- Loss of the signal indicates attempted access to *HV*, allowing effective response, *i.e.*, battery command contactors open

ECE 398GG © 2022 - 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

33

TEST AND CHARACTERIZATION METHODS

Batteries can be tested for their behavior under,

and response to, abusive conditions

Conditions can be electrical, mechanical, thermal,

environmental or functional

Many standardized test methods exist; test choice

usually depends, typically, on the purpose of the

specific characteristic investigated

ECE 398GG © 2022 - 2023 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

