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ECE 398GG – ELECTRICAL VEHICLES
6. Battery Hazards and Safety

Oliver Gross

Stellantis NA
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OUTLINE

q Key hazards batteries are exposed to and key 

hazards batteries produce 

q Electrochemical vs. chemical energy release

q Thermal propagation 

q High voltage hazards 

q Test and characterization methods 

q Mitigation and control strategies
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THE  HAZARDS  FOR  BATTERIES  AND  
EVs

q A battery is an active energy storage device:
m its operation to perform its primary function 

gets it de-energized: lack of control of such an 
operation creates hazards

m is unlike a fuel tank, which can be drained of 
fuel passively without the operation  the device

q A key battery function is to isolate the electroche-
mical components from the environment and vice 
versa; the failure of this function leads to many of 
the hazards we associate with batteries
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REVIEW  OF  THE  EV BATTERY 
PRIMARY  FUNCTIONS

q Provide electrical power
q Accept electrical power
q Control state of function
q Communicate with the host (vehicle)
q Store electrochemical energy

TTTTY=f(x)

Electric motor 
drive unit
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external hazard

THE  FUNCTION – HAZARD  LOOP

q External hazards can lead to functional failures
q Functional failures can lead to internal hazards

q Internal hazards can propagate to become 
external hazards

functional failureinternal hazard

prevent

prevent/mitigate

mitigate
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LIST:  HAZARDS  RELATED  TO 
EV BATTERIES

external hazards internal hazards

debris impact to enclosure isolation failure

excessive heat / fire internal short circuit

water immersion excessive cell temperature

static load vented gas products

external electrical short fluid leak

q Most hazards can be captured within this list:

6



Page 4

ECE 398GG © 2022 - 2023  George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.     7

EUCAR HAZARD  LEVELS

EUropean Center for Automotive Research
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Li-ION TECHNOLOGY

q Today’s predominant battery technology 

q Highest rechargeable battery energy 

density (Wh/l) and specific energy (Wh/kg)

q Excellent cycle life and durability

q High-cell voltage (e.g., 3.6 V ) implies 

aqueous electrolytes cannot be used and 

organic solvent-based electrolytes are 

used instead

q Flammability concerns – particularly, when 

coupled with the high material energies
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TABLE  OF  COMMON  
ELECTROLYTE  MATERIALS

9

Batteries currently use LiPF6 (lithium hexafluorophosphate) salt 
in organic solution of ethylene carbonate (EC) solvent and other 
viscosity modifiers (diethylcarbonate (DEC), dimethylcarbonate 
(DMC), ethylmethylcarbonate (EMC): for example is 1.2 M LiPF6
in 3:7 EC:EMC – is considered a standard test electrolyte

material structure

ethylene carbonate 
(EC)

vinyl ethylene 
carbonate (VEC)

Lithium 
hexafluorophosphate

material structure

dimethyl carbonate 
(DMC)

ethyl methyl 
carbonate (EMC)

diethyl carbonate 
(DEC)
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ELECTROLYTE  MATERIALS

10

q The EC is a solid at room temperature and 
dissolves the salt and provides the ionic transport 
for both the Li+ cations and the PF6- anions

q The other carbonates dissolve and dilute the EC
to lower the electrolyte viscosity and make it more 
volatile 

q Plays a large role in the development of stable SEI
– solid electrolyte interphase – to allow passage of Li-
ions and prevent surface electrolytic reduction

10
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SOLID  ELECTROLYTE  INTERPHASE (SEI)  
LAYER

X e-

Li+O
O

O

Li+

Graphite 
anode 

SEI

11

q SEI layer forms on the 
anode (carbon) surfaces

q Ionically conductive, elec-
tronically insulative layer

q Created during initial 
charge in the formation 
process
o reduction of electrolyte solution 

onto the carbon surface
o main organic carbonate (EC or PC)

react with Li to form soluble Li-oxide
within organic structure
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ELECTROLYTE  ISSUES

12

q LiPF6 is sensitive to water, 
decomposing to form 
hydrofluoric acid (HF) and 
fluoro-phosphoric acid

q High temperatures (> 55° C) 
will also encourage decom-
position of the salt under the 
voltages seen within the cell
○ the acids attack the anode 

and cathode, leading to 
the destruction of the cell

○ stabilizers are added to 
electrolyte to mitigate 
these issues 

Schematic summary of observed electrolyte decomposition mechanisms

12
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ELECTROLYTE  ISSUES
q LiPF6 also decomposes at potentials around 4.5 V
q Other salts are being considered as well (LiTFSI 

and other Imides, “LiBOB”, LiBF4)
q Solvent flammability/volatility

Common Electrolyte Salt
▪ LiPF6 - Li hexafluorophosphate - this salt is almost 

exclusively used in current Li-ion batteries because it 
provides the best mix of the required properties; con –
easily reacts with water to form HF

▪ LiAsF6 - Li hexafluoroarsenate -similar performance to Li 
hexafluorophosphate without HF formation;con –arsenic 
is highly toxic

▪ LiClO4 – Li perchlorate – one of the first salts studied, but  
abandoned due to explosivity

▪ LiFSI and LiTFSI – “imide salts” – these salts are under 
intensive research currently for use with the next 
generation materials (silicon, 5 V cathodes) due to the 
high thermal stability and stability with water

13
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CHEMICAL  vs. ELECTROCHEMICAL 
ENERGY

q Graphite + Li:

q In the presence of oxygen and heat, the energy per 

gram of lithiated graphite anode released is 13 X that 

of the stored electrochemical energy

q A similar issue is faced by the decomposition of a 

metal oxide anode

C6 + Li = LiC6;  4.9 kJ/g

LiC6 + 6 1/4 O2 =  ½ Li2O +  6 CO2;  63.6 kJ/g

14
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CATHODE  ELECTROCHEMICAL 
DECOMPOSITION

q A classic metal oxide cathode material has this 
formulation:

q However, when charged the amount of lithium is 
considerably less:

q The cathode is prone to decompose to more table 
materials, under heat, releasing heat and oxygen:

LiMO2; M=3+

Li1-x MO2; M = (1 – x) 3+ & x4+

Li1-x MO2 (1-x)LiMO2 + xO2 ; M = 3+
remember: the anode reaction and the fuel triangle!

15

ECE 398GG © 2022 - 2023  George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.     16

DISTRIBUTION  OF  EV/PHEV FIRES

95 vehicle types:
make / model / year

16
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CELL  POWER  &  HEAT GENERATION

cell specifications:
capability (C): 25 Ah

nominal DC resistance (R): 0.5 mohm

V max: 4.2 V

V nom: 3.68 V

specific heat capacity (Qh): 1   kJ/kg K

specific energy: 250 Wh/kg

key equations:
power (P) = V min * (V max - V min) /R       (W)

current (I) = P/V min (A)

P heat = I 2 
* R (W)

Q heat = P heat *  t (J)

17
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CELL  UNDER  UNCONSTRAINED 
DISCHARGE

Based on the cell specifications given in the previous slide

peak power at V
= Vmax/2

18
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CELL  POTENTIAL  TEMPERATURE  RISE
q Assumptions: adiabatic condition and the current can be 

maintained throughout the discharge

q The temperature rise looks incredible!

19
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q Assume a 10-s discharge at a specified voltage = f (V max ) :

q Assume cell is adiabatic, even though there will be heat 

rejected into the environment

q The table shows the potential temperature rise that can be 

achieved inside the cell

CELL  POTENTIAL  TEMPERATURE  RISE

20
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q An issue for ALL Batteries.
q Of particular interest for Li-ion, due to high energy density 

AND the use of flammable electrolytes
q Both cathode and anode materials will exothermically 

decompose, at elevated temperatures.
q The energy levels are exacerbated with higher state of charge 

(s.o.c.)

THERMAL  RUNAWAY  ISSUES

21
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THE  3 STAGES OF  CELL  
THERMAL  RUNAWAY

Source: K. Liu, Y. Liu, D. Lin, A Pei, Y Cui; Materials for Li-Ion Battery Safety, http://advances.sciencemag.org/June 22, 2018

22
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SOME  SALIENT  Li-ION CELL   
TEMPERATURES

Some temperature-based events:

23
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MORE  ON  CELL  PROPAGATION

GTR No.20 proposes notification of thermal event to occupant 
and provides at least 5 minutes to egress vehicle, before 
propagation between cells leads to enclosure breach.

24
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VOLTAGE  RANGES

q A single cell is, typically, operating between 2.8 V

and 4.2 V, with 3.7 V nominal value

q Cells are connected in series, in order to deliver 

more power

m EVs will often have ~100 cells in series – 400 V systems

mmore recent systems have around 200 cells in series –

800 V systems

25
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ELECTRIC  SHOCK

It takes as little as 100 mA of direct current to induce cardiac 
arrhythmia.

This can be achieved with as little as 60 V across dry skin

26
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DEFINITION  OF  HIGH  VOLTAGE

27
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ARC  FLASH

EVs have hundreds of volts in their propulsion 
system, providing opportunity for arc flashes

An arc flash can cause blindness, severe burns 
and tissue damage

28
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TYPICAL  HV-RELATED  EV LABELS

29
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THE  PARTS  OF  AN  HV PROPULSION  
SYSTEM

HVIL
circuit

30
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TWO–POINT  ISOLATION / ONE–POINT 
TOUCH

+- +ve isolated from 
enclosure-ve isolated from 

enclosure

two-point isolation:

potential but 
no return 

path

= one-point 
touch

most HV batteries continuously monitor electrical 
isolation between each leg and the enclosure

• 500 Ω/V
• 1,000 V DC

design min

31
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THE  BATTERY  HV SYSTEM
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HIGH  VOLTAGE  INTER – LOCK  (HVIL)

q A low voltage (5-12 V ) circuit within the battery and other 
HV components within the propulsion system, routing 
through all HV connections and access panels (through 
which HV can be accessed)

q Often sourced by the battery manufacturer as part of the 
Battery Management System

q The signal is normally a pulse wave modulated (PWM) signal, 
under 10 mA

q The return of the signal is sensed within the battery and at 
least at one additional point in the propulsion system

q Loss of the signal indicates attempted access to HV, 
allowing effective response, i.e., battery command 
contactors open

33
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TEST  AND  CHARACTERIZATION 
METHODS

q Batteries can be tested for their behavior under, 

and response to, abusive conditions

q Conditions can be electrical, mechanical, thermal, 

environmental or functional

q Many standardized test methods exist; test choice 

usually depends, typically, on the purpose of the 

specific characteristic investigated

34
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ELECTRICAL  ISSUES
q External short circuit – a sustained electrical discharge, 

usually targeting the same resistance as the cell, but often 

at varying levels

q Over-charge – charging a cell to a voltage and capacity 
above 100 % s.o.c. setpoint;  tests vary but a common cha-

racterization test – USABC – charges the device to 200 %

rated capacity, limited to 125 % maximum voltage

q Over-discharge – discharging a cell into reversal, by 
attempting to remove from full charge 200 % of its rated 

energy capacity 

35
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MECHANICAL  TESTS

q Overall tests seek to either induce an internal 
electrical short or a mechanical failure

q Crush – deform a device along each of its axes
q Shock – provide an impulse to the device under 

each of its major axes
q Vibration – similar to a shock, but signal is 

smaller amplitude and varied over a frequency 
range

q Drop/impact – drop device onto a surface or 
impact the device with a projectile

q Penetration – drive a penetrating object into the 
device

36
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THERMAL/ENVIRONMENTAL  FEATURES

q Heating – raise the temperature of the device and 
determine the onset point of thermal runaway and 
characterize the observed results

q Thermal Shock – repeatedly expose device to 
alternate thermal extremes

q Water Immersion – submerge the device in water –
usually saline

q Humidity – expose device to higher temperatures 
and non-condensing humidity

37
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FUNCTIONAL  TESTS

q Verify the device’s response to all-type hazards

q Thermal – isolation of battery from host under 

extreme thermal conditions

q Electrical – verification that the active and passive 

devices correctly intervene operation on 

overcurrent, over-voltage and under-voltage

q Mechanical – monitor primary and secondary 

effects, and intervene on function

38
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39

BATTERY  &  ENVIRONMENT:  HAZARD  & 
RISK  (OPERATIONAL SAFETY)  EXAMPLES

safe operating zone

temperature

vo
lta

ge

limited operation

Hazard

cell 
(NMC/C):

4.35 V
4.25 V

2.80 V
2.10 V

39
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RISK  EVALUATION

incident

Functional safety related to control systems, their 
algorithms and software.  Please refer to ISO26262

40
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TYPICAL  FUNCTIONAL  SAFETY  
REQUIREMENTS  FOR  48-V  Li-ion  BATTERY

41

similar efforts are applied to the powertrain controller

41
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PROPAGATION  MITIGATION  
STRATEGIES

q Controls: prevent operations that leads to cascading 
failures

q Electrochemistry: construct thermally stable solutions via 
deployment of active materials/electrolytes

q Mechanical design: direct energy release/venting
q Thermal design: insulate between cells and within pack; in 

the future, introduce immersion

42
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VENT  GAS  MANAGEMENT

q A Li-ion cell can produce ~ 5 l gas/Ah in the process 
of complete decomposition; a cell, typically,  
produces about half this volume

q Gas must be managed within the battery and off-
board of the vehicle

q Gas pressure, gas flow and gas temperature 
management through proper routing

43
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HIGH  CURRENT  MANAGEMENT

q Contactors rated to voltage and peak current
q Thermal fuses
q “Smart” fuses/pyrofuses/breaker-style switches
q Redundant current measurement

example: current vs.
time plot for a 
thermal fuse

t (s)
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